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ABSTRACT

Computational modeling and simulations of visual and infrared (IR) sensors are inves-

tigated for a new hypervelocity terminal guidance system of intercepting small asteroids

(50 to 150 meters in diameter). Computational software tools for signal-to-noise ratio

estimation of visual and IR sensors, estimation of minimum and maximum ranges of

target detection, and GPU (Graphics Processing Units)-accelerated simulations of the

IR-based terminal intercept guidance systems are developed. Scaled polyhedron models

of known objects, such as the Rosetta mission’s Comet 67P/C-G, NASA’s OSIRIS-REx

Bennu, and asteroid 433 Eros, are utilized in developing a GPU-based simulation tool

for the IR-based terminal intercept guidance systems. A parallelized-ray tracing algo-

rithm for simulating realistic surface-to-surface shadowing of irregular-shaped asteroids

or comets is developed. Polyhedron solid-angle approximation is also considered. Us-

ing these computational models, digital image processing is investigated to determine

single or multiple impact locations to assess the technical feasibility of new planetary

defense mission concepts of utilizing a Hypervelocity Asteroid Intercept Vehicle (HAIV)

or a Multiple Kinetic-energy Interceptor Vehicle (MKIV). Study results indicate that

the IR-based guidance system outperforms the visual-based system in asteroid detection

and tracking. When using an IR sensor, predicting impact locations from filtered images

resulted in less jittery spacecraft control accelerations than conducting missions with a

visual sensor. Infrared sensors have also the possibility to detect asteroids at greater

distances, and if properly used, can aid in terminal phase guidance for proper impact

location determination for the MKIV system. Emerging new topics of the Minimum Or-

bit Intersection Distance (MOID) estimation and the Full-Two-Body Problem (F2BP)
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formulation are also investigated to assess a potential near-Earth object collision risk and

the proximity gravity effects of an irregular-shaped binary-asteroid target on a standoff

nuclear explosion mission.
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CHAPTER 1. INTRODUCTION

1.1 Research Motivation

Earth is subject to encounters with extraterrestrial objects on a yearly basis, which

can be seen by meteor showers or other events. However, some events may not be

observed due to their small size and insignificant effects. Unknown impact events are

statistically modeled as discussed in [1]. Events taken into account are, but not limited

to, ones that cause noticeable damage to Earth. Notable damage can be seen at places

such as Barringer crater as well as Chicxulub crater. Such impact events could be very

dangerous to the Earth’s population and cycles.

In the morning of February 15th, 2013 an impact event occurred near Chelyabinsk,

Russia. A meteor measuring approximately 17 meters in diameter streaked across the

sky which ended in an air burst causing harm to the nearby population and millions

of dollars worth of damage to surrounding buildings [2, 3, 4, 5]. With such seemingly

random events, scientific research teams are investigating asteroid and comet composition

as well as intercept. This has been seen by the intercept of comet Tempel 1 (Deep

Impact mission), Rosetta mission observations, proposed Double Asteroid Redirection

Test (DART) mission, as well as the Hypervelocity Asteroid Intercept Vehicle (HAIV)

concept [6, 7, 8, 9].

During the past ten years, the Asteroid Deflection Research Center (ADRC) has been

working on innovative planetary mission concepts involving mission trajectory optimiza-

tion, terminal guidance using optical navigation, and asteroid disruption using nuclear
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or kinetic impactor options [11, 10, 12, 13]. These studies include analysis of missions to

small targets, which measure less than 150 meters in diameter. Two concepts developed

at the ADRC are the HAIV and Multiple Kinetic-energy Impactor Vehicle (MKIV) [14].

Both scenarios require the development of terminal guidance algorithms using simulated

imagery to intercept the target asteroid. Once intercept is certain, the spacecraft delivers

either a momentum transfer by impact to divert the target from its nominal trajectory, or

a blast causing disruption or pulverization. For such reasons, precision terminal guidance

and realistic image processing is required to ensure a real mission’s success.

Research investigating hypervelocity intercept of a small asteroid (< 150 m) is in

its infancy. However, military and defense applications, which include ballistic missile

intercept, have been already developed. This has been seen with evolution of the Exoat-

mospheric Kill Vehicle (EKV), which has been developed by Raytheon and investigated

by the Department of Defense [15]. The system incorporates an infrared sensing array as

well as communication with satellite systems, which are used to aid in target intercept.

Unfortunately, further military advancement assessment and reliability reports of this

system are classified. In contrast, other systems which explore the use of hypervelocity

intercept have been studied.

A concept similar to the MKIV is the Multiple Kill Vehicle (MKV). This system uses

multiple sub-spacecraft to either independently determine a target or be given target co-

ordinates from a main camera system. Methods of target acquisition along with devices

and targeting algorithms used have not been specified. Work herein investigates the

possibility of implementing a changed MKV concept which includes image segmentation

algorithms as well as sub-image centroids. However, each spacecraft must still undergo

precision autonomous terminal guidance maneuvers, which include these images. Inves-

tigation of image device implementation must be pursued to better understand possible

realistic situations.
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A key implementation of the EKV, and possibly the MKV, is the use of the infrared

sensor, which has not been used for asteroid intercept in the past. These sensors, however,

require a cryogenic cooling assembly due to the detector’s specific detectivity at certain

temperatures. When using such a device, the peak emissions of asteroids fall within

the sensitive regime of the mid to far infrared detector. This is due to the asteroid’s

temperature. Systems which have used an infrared detector array have been NASA’s

Wide-field Infrared Survey Explorer (WISE) telescope as will as Stratospheric Obser-

vatory for Infrared Astronomy (SOFIA). Both the EKV and infrared survey systems

give motive to further investigate infrared devices for hypervelocity asteroid intercept in

support of planetary defense.

1.2 Terminal Intercept Guidance Algorithms

Previous research work of Hawkins [16, 17] has explored the use of various propor-

tional navigation (PN) guidance logic and predictive guidance schemes. Furthermore, he

investigated the intercept capability of each guidance law separately. The work herein

explores the capabilities for hypervelocity asteroid intercept when a combination of guid-

ance laws, or hybrid, are implemented. Doing so may have the outcome of reducing the

required fuel usage while still maintaining the desired precision. The research work

of Hawkins [16, 17], which is based on ideal image optics, were later implemented on

Graphical Processing Units (GPUs) in Kaplinger [18].

The images generated were used in calculating the line-of-sight (LOS) vector to the

center of brightness (COB) of the image array [16, 17]. Targeting the COB location,

along with preplanned thruster pulses, has been used in NASA’s Deep Impact mission.

This, however, is offset from the center of mass (COM) or the center of figure (COF)

of the object, which might be desired for particular mission objectives. For the case

of hypervelocity intercept, it is desired to have the most efficient energy transfer be
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transformed to either complete destruction or changing the asteroid’s velocity. A full

shape model would be required to ensure that a location close to the COM is targeted. In

some cases, a proper approach phase angle will give suitable illumination of the target for

precision intercept. However, an infrared device would give this measurement regardless

of approach phase angle. This reason gives a clear advantage over visible-band cameras,

and it gives the main reason for further study of IR detectors.

To further add realism to the simulation, Hawkins [16, 17] implemented a Schmitt

trigger to the guidance algorithm thruster output acceleration to help with system jitter

and realistic thruster firing output magnitudes. The estimated LOS rate used non-filtered

LOS measurements, as well as using a first-order differencing method. Since PN guidance,

among other guidance laws, uses this measurement, some terminal guidance trajectories

become sensitive to the targeting location pixel changes. Among the pixel location issue,

image noise was not included nor was higher-order approximations for the LOS rate. In

this thesis, we further investigate improvements for the LOS rate estimation and explore

the use of signal filtering to compensate for the target pixel location changes. These

applications will be used for the MKIV mission concept. Algorithms for determining the

intercept asteroid impact locations for the multiple bodies as well as primitive object

determination will be explored in this thesis

1.3 Detector Models

Kaplinger [18] uses polyhedron models, ideal geometric optics, and GPUs to cre-

ate realistic grey-scale images. As stated previously, these images were used to create

autonomous guidance schemes for hypervelocity asteroid intercept. These images were

created without the consideration of sensor signal-to-noise ratio for varying asteroid de-

tecting sensors. Moreover, there was no detailed investigation conducted for various

camera nor sensor types as well as image noise inclusion. By neglecting the sensor noise,
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digital image processing was quite trivial for finding the target’s projected line-of-sight

offset vector. In addition, only the visible band of light was taken into account, which

only involved the inclusion of a representation for the reflectivity of the target object.

Furthermore, the generated images created by Kaplinger use a primitive form for deter-

mining shadows based on face outward pointing vectors and the incoming sun vector.

This does not always work when craters are present, due to complex geometry, nor when

part of the object passes in front of itself.

To create more realistic images, work herein advances the synthetic imaging done by

Kaplinger. One such way is by including surface-to-surface shadowing for non-convex

shapes. This is particularly helpful when generating visible band images for terminal

guidance. Further investigation is done in the inclusion of image signal-to-noise ratio es-

timation for visible and infrared wavelengths, which involves incorporating the asteroid’s

emissivity, reflectivity, and solid angle approximations. When considering a polyhedron

shape, the solid angle is approximated by using each triangular face as well as the aster-

oid’s location with respect to the sun as well as the spacecraft. For the infrared detector,

both photon and thermal sensor are explored. Confirmation for the infrared sensor for-

mulation herein is done by calculating and comparing detection distances for the already

operational WISE telescope. Moreover, specific telescope and sensor parameters are ex-

plored for the use in terminal guidance, which includes trajectory simulations based from

synthetic imaging.

Another device that is considered is radar, which is primarily used for the investiga-

tion of maximum detection distance estimation. In general, components of the radar can

be changed to fit the users needs. However, estimation for the cross-sectional area using

polyhedron models is not explored. This becomes very complicated since the internal

composition as well as structure of any asteroid interest needs to be considered. Estima-

tion of the cross-sectional area is completed by scaling already known smaller asteroids,

such as Bennu.



www.manaraa.com

6

1.4 Orbit Characterization and Binary Asteroid Systems

Orbit characterization is important to establish if an asteroid or any other near-Earth

object (NEO) would cause a risk to Earth and its inhabitants. Researchers and scientist

use measurement data from observations to estimate an object’s orbital elements. This

also includes Earth among other celestial body’s. In reality, orbital elements vary over

time due to the non-Keplerian motion which is experienced. These effects are caused

by the gravitational pull from all objects within the solar system. However, Keplerian

motion can be a close approximation for an initial glance at potentially hazardous objects.

A method was developed which calculates the minimum orbit intersection distance

(MOID) between 2 ellipses [19]. Since Keplerian motion, without perturbations, are el-

lipses, the MOID algorithm can be applied to an Earth ellipse and known solar system

body ellipse. This method, however, is independent of time and requires progressing

through discrete angles between zero and 360 degrees. Hence, the speed of the algorithm

is based on the amount of precision required by discretization, which was never stated

in [19]. Work herein investigates a linear interpolation accuracy when finding crossing

events. Doing so allows for lower number of discretized points, which increases com-

putational speed. Increasing speeds would allow for a more efficient search for known

potentially hazardous NEOs.

Another area of interest when considering planetary defense is solar system binary

objects. This is particularly interesting for hypervelocity intercept as well as proximity

dynamics due to complexity of the localization of objects. Recent work on the Double

Asteroid Redirection Test (DART) has been investigating the Didymos binary system

[20]. The proposed mission will send a spacecraft to intercept with the secondary body.

Measurements from the perturbed secondary body will help in understanding binary

asteroid movement and reaction to impulsive forces. Researchers and engineers at the

Jet Propulsion Laboratory (JPL) and NASA Goddard Space Flight Center (GSFC) have
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been using polyhedron shape models to simulate the full-two-body-problem (F2BP).

Work herein supports the work done at the GSFC. In addition to using a formulation

developed in [21], further advancements have been made in the use of non-convex shapes

as well as varying pockets of internal density. However, the density pockets must also be

represented by an internal polyhedron as well as a density difference from the nominal

constant density.

A variety of topics are investigated throughout this work, which range from initial

orbit characterization to terminal guidance algorithms and realistic sensor simulations.

Each subject is needed to ensure that hazardous celestial objects can be determined and

then disrupted or eliminated. The initial MOID calculation helps find known objects that

may be harmful to Earth. Incorporating image sensor simulations provide the terminal

guidance algorithms with realistic measurements corresponding to the asteroid. Inves-

tigating binary asteroid system dynamics provides a unique and challenging scenario, if

such a system were to endanger the planet.



www.manaraa.com

8

CHAPTER 2. HYPERVELOCITY TERMINAL GUIDANCE

LAWS

2.1 Introduction

The Terminal Guidance, Navigation, and Control (GNC) subsystem is one of the key

subsystems of asteroid intercept and rendezvous missions. Previous missions, such as

STARDUST, EPOXI, and Deep Impact have utilized terminal GNC systems to conduct

celestial object flybys as well as impacts [22]. These orbital maneuvers, however, must

be done autonomously based on on-board measurements of the asteroid’s position and

velocity states as well as target reference trajectories. If the spacecraft required human

input for terminal intercept, the delay and even power required for communication with

Earth could potentially cause mission failure. For this reason, autonomous guidance and

control is considered for hypervelocity asteroid intercept. Two guidance logics as well

as a combination of both, among using filters, are considered herein. These algorithms

follow Proportional Navigation (PN), Kinematic Impulse (KI), and a hybrid of both PN

and KI. However, each requires a line-of-sight vector, which can be found by using a

reference trajectory and the equations of motion.
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2.2 Equations of Motion

The target asteroid is modeled as a point mass in standard heliocentric Keplerian

Orbit. Its orbital motion is described by

ṙT = vT (2.1)

v̇T = gT (2.2)

gT = − µ�rT (t)

‖rT (t)‖3
2

(2.3)

where rT is the position vector of asteroid with respect to the heliocentric reference

frame, µ� is the solar gravitational parameter, and gT is the gravitational acceleration

due to the sun.

Similarly, the orbital motion of a spacecraft is described by

ṙS = vS (2.4)

v̇S = gS + u(t) (2.5)

gS = − µ�rS(t)

‖rS(t)‖3
2

(2.6)

where rS is the position vector of the spacecraft with respect to the heliocentric reference

frame, gS is the gravitational acceleration acting on the spacecraft due to the sun, and

u is the control acceleration provided by the spacecraft thrusters. Other disturbing

acceleration is neglected due to the assumption of small size asteroid [16]. However, these

small disturbances may be included if higher-order dynamics are required or desired. A

depiction of the simple two body system can be seen in Figure 2.1
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Figure 2.1: Depiction of asteroid and spacecraft position vectors along with the line-of-
sight unit vector.

The relative orbital motion of the spacecraft with respect to the target asteroid is

described by

r = rS − rT (2.7)

v = vS − vT (2.8)

v̇ = gS − gT + u(t) (2.9)

where r is the relative position of the spacecraft with respect to the target asteroid.

It is important to calculate the relative state, either from a reference orbit or from

measured/estimated data, because this information is needed when applying a given

guidance control scheme that calculates a required control acceleration.

2.3 Guidance Laws

In this section, two different terminal guidance control algorithms will be explored

as well as a hybrid controller concept. It is important to note that each guidance law
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Figure 2.2: Illustration of the geometry for PN guidance.

is formulated for continuous information. In practice however, this is not the case. In

a later section, we will explore the challenges when involved when considering discrete

measurements, which may include optical navigation parameters.

2.3.1 Proportional Navigation (PN)

The PN guidance originates from the need of homing guidance. Homing guidance

is usually referring to the mid to terminal phase of missile guidance. The PN guidance

law commands acceleration perpendicular to the instantaneous spacecraft-asteroid line-

of-sight (LOS) vector. At each instance, the acceleration commands are proportional

to the line-of-sight rate and the relative closing velocity. If done correctly, this scheme

pushes the LOS rate to zero, which, if achieved, will result in a successful intercept. An

illustration of PN guidance can be seen in Figure 2.2 The guidance law, as given in [23],

is

u = nVcΛ̇ (2.10)

where u is the control acceleration command, n is a unitless effective navigation gain

(usually in the range of 3 to 5), Vc is the spacecraft-asteroid closing velocity, and
˙̂
Λ is the

LOS rate vector. The LOS rate can be calculated if the states of the target are known.
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However, in cases where this is not entirely possible, an estimation of the LOS rate can

be used. A simple, and if sampled fast enough, way for finding the LOS rate is by finite

differencing. The first-order estimation using this method is

Λ̇ =
dΛ̂

dt
≈ Λ̂(t)− Λ̂(t−∆t)

∆t
(2.11)

where ∆t is the time between the current and the previous sample for the LOS vector

measurements. Higher order approximations using more LOS samples are discussed

later in this chapter. Other required variables are the closing velocity, time-to-go, and

the line-of-sight rate which are computed as follows:

Vc = −ṙ · Λ̂ (2.12)

tgo =
‖r‖2

Vc
(2.13)

Λ̂(t) = − r(t)

‖r(t)‖2

(2.14)

2.3.2 Kinematic Impulse (KI) Terminal Guidance Law

The Kinematic Impulse (KI) guidance law is a predictive control method. It is based

on the estimation of the LOS vector and takes into account the target’s future position.

The method depends on a linearized theory to minimize the cost of on-board computa-

tions. Predictive guidance requires on-board measurement to estimate the lLOS vector,

as well as the LOS rate vector, and knowledge of the target asteroid’s orbit. This will also

be represented by the relative error state transition matrix, which is derived from orbit

perturbation theory [27]. A depiction of the reference target orbit and the spacecraft can

be found in Figure 2.3.
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Figure 2.3: Perturbed orbital trajectories of the target asteroid and spacecraft.

A reference target represented by the asteroid’s state, x∗T , is used to determine the

spacecraft’s state, xS, with the incorporation of the perturbation, δx, as follows:

xS = x∗T + δx (2.15)

where xS is the spacecraft state vector represented as

xS = [xS yS zS ẋS ẏS żS]T (2.16)

Similarily, the state for the reference trajectory is written as

x∗T = [xT yT zT ẋT ẏT żT ]T (2.17)

The magnitude of the reference orbit’s position vector as well as the spacecraft’s position

vector are described by

rT =
√
x2
T + y2

T + z2
T

rS =
√
x2
S + y2

S + z2
S (2.18)
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In general, the nonlinear differential equations of motion of the spacecraft are repre-

sented as

ẋS = f (xS, t) =



ẋS

ẏS

żS

ẍS

ÿS

z̈S


=



f1

f2

f3

f4

f5

f6


=



ẋS

ẏS

żS

−µ� xS
r3S

−µ� yS
r3S

−µ� zS
r3S


(2.19)

By substituting Equation 2.19 into 2.15 and using the perturbation theory, we obtain

the equations of motion of the form

ẋS = f (xS, t) = f (x∗T + δx, t) (2.20)

Then, by expanding the nonlinear equation using a Taylor series expansion about x∗T and

incorporating the time derivative of Equation 2.15 as well as applying reference trajectory

state knowledge at any given time, we obtain the perturbed differential equations of

motion as

δẋ(t) = F(t) δx(t) (2.21)

where F is the Jacobian matrix of the f vector which is evaluated at x∗T , defined as

F(t) =

[
∂f(t)

∂x(t)

]
∗

=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−µ�
r3S

+
3µ�x2S
r5S

3µ�xSyS
r5S

3µ�xSzS
r5S

0 0 0

3µ�ySxS
r5S

−µ�
r3S

+
3µ�y2S
r5S

3µ�ySzS
r5S

0 0 0

3µ�zSxS
r5S

3µ�zSyS
r5S

−µ�
r3S

+
3µ�z2S
r5S

0 0 0


(2.22)

By expanding the state-error equation, Equation 2.15, using a Taylor series as well as

substituting in Equation 2.21 along with its time derivatives, we obtain the solution as

δx(t) =

[
I + F(t)tgo +

1

2
F(t)2t2go + ...

]
δxo = Φδxo (2.23)
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where I is a 6 × 6 identity matrix, δxo is the initial relative or state error state, tgo is

the change in time from the initial state to the final desired state, and Φ is the state

transition matrix. This solution is used for the evolution of the relative-orbit error state.

The state transition matrix used for estimating the relative state is given by

Φ =



1+
3µ�x2St

2
go

2r5S
−µ�t2go

2r3S

3µ�xSySt
2
go

2r5S

3µ�xSzSt
2
go

2r5S
tgo 0 0

3µ�xSySt
2
go

2r5S
1+

3µ�y2St
2
go

2r5S
−µ�t2go

2r3S

3µ�ySzSt
2
go

2r5S
0 tgo 0

3µ�xSzSt
2
go

2r5S

3µ�ySzSt
2
go

2r5S
1+

3µ�z2St
2
go

2r5S
−µ�t2go

2r3S
0 0 tgo

−µ�tgo
r3S

+
3µ�x2Stgo

r5S

3µ�xSyStgo
r5S

3µ�xSzStgo
r5S

1+
3µ�x2St

2
go

2r5S
−µ�t2go

2r3S

3µ�xSySt
2
go

2r5S

3µ�xSzSt
2
go

2r5S

3µ�xSyStgo
r5S

−µ�tgo
r3S

+
3µ�y2Stgo

r5S

3µ�ySzStgo
r5S

3µ�xSySt
2
go

2r5S
1+

3µ�y2St
2
go

2r5S
−µ�t2go

2r3S

3µ�ySzSt
2
go

2r5S

3µ�zSxStgo
r5S

3µ�ySzStgo
r5S

−µ�tgo
r3S

+
3µ�z2Stgo

r5S

3µ�zSxSt
2
go

2r5S

3µ�zSySt
2
go

2r5S
1+

3µ�z2St
2
go

2r5S
−µ�t2go

2r3S


(2.24)

where tgo is the time-to-go, xS, yS, and zS are the position components for the spacecraft,

and rS is the magnitude of the spacecraft’s position vector. However, for simplification,

the state transition matrix, Φ, will be set into four 3x3 matrices, as follows:

Φ =

 Φ1 Φ2

Φ3 Φ4

 (2.25)

Completing the matrix multiplications, we obtain the expression of the relative position

at a final time given an initial relative position as

r (tf ) ≈ r̃tf = Φ1(t)r(t)+Φ2(t)ṙ(t) (2.26)

The unit vector of the estimated final state vector is written as

Λ̂c =
r̃tf
‖r̃tf‖2

(2.27)
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Since the predicted final relative position is calculated, the required change in velocity

can be estimated. It is assumed that the relative velocity of the spacecraft and asteroid

has a very small change. By assuming the unchanging relative velocity, the required

approximated change in velocity is found as

δv =
r̃tf
‖r̃tf‖2

Vc−ṽ (2.28)

where ṽ is the approximation of the relative velocity. The expression for ṽ can be found

by using the state transition matrix or estimated by using a combination of the line of

sight and line of sight rate. By using the latter, the expression for the estimation for the

relative velocity is

ṽ = −VctgoΛ̇(t)−VcΛ̂(t) (2.29)

By substituting Equations 2.27 and 2.29 into Equation 2.28, the final approximation for

the change in velocity is found as

δv = Vc

(
Λ̂c+tgoΛ̇(t)+Λ̂(t)

)
(2.30)

With the required estimation of velocity change, the command acceleration may also be

found. What must be commanded is along the same unit vector as the change in velocity

and can then be written as

u = Tmax
δv

‖δv‖2

(2.31)

where Tmax is the maximum amount of thrust available by the guidance system. Further

details on the state transition matrix and velocity change derivations can be found in

[16, 27].

2.3.2.1 Preplanned Pulses

Since the KI guidance is a predictive scheme and calculates a required change in

velocity to intercept a target at a given time, it may be used to determine preplanned

pulses. This is one of the advantages that KI has over PN. The number of pulses desired is
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Figure 2.4: Hybrid guidance scheme illustrating the use of 3 preplanned KI pulses. The
variable tgo represents the time-to-go until asteroid intercept.

user defined. At each pulse, there is an associated time before intercept, which correlates

to the time-to-go. When time-to-go reaches the pulse triggering time and the estimated

change in velocity is greater than or equal to the allowed thruster velocity change, then

the thrusters are turned on and provide maximum thruster output, Tmax. However, if

the reference model is not accurate, then the required velocity change will reflect the

poor model. Incorporating sensor information will help create a better estimation for

the LOS rate. This will be further discussed later in this chapter.

2.3.3 The KI/PN Hybrid Concept

The KI/PN hybrid concept incorporates the preplanned pulses associated with KI

guidance and the continuous firing of the PN guidance. During the beginning portion of

the terminal phase for asteroid intercept, the spacecraft uses the preplanned KI pulses,

and once the time-to-go is less than a certain amount, the spacecraft then switches over

to PN. An illustration can be seen in Figure 2.4. By implementing PN, it ensures that the

target will be intercepted due to the continuous nature of the guidance scheme. However,

the target may not always be intercepted due to the thruster limitations. Incorporating

a Schmitt trigger onto the continuous PN will create realistic capabilities given by an

impulsive thruster. Possible advantages of using a hybrid scheme are observed herein

and briefly discussed in [28].
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2.4 Higher Order LOS Rate Approximations

A higher order estimation for the LOS rate, using a greater number of previous LOS

measurements, can be found by using the general form of a Taylor series expansion

and backward differencing [24, 25]. The second-order derivative expansion of a general

equation’s derivative is given by

F ′(x) =
F (x)−F (x−h)+1

2
h2F ′′(x)

h
(2.32)

where F (x) is a given function at time x, and h is the time between the current (first)

and previous (second) sample. The primes denote the time derivative. The second time

derivative requires more Taylor series terms and manipulation, but can be found by

substitution and finite differencing as

F ′′(x) =
mF (x)−(m+h)F (x−h)+hF (x−h−m)

mh2
(2.33)

where m is the time between the second sample and the third sample. If all of the times

between samples are equal, which can be represented by h, then Equation 2.33 can be

simplified as

F ′′(x) =
F (x)−2hF (x−h)+F (x−2h)

h2
(2.34)

Equation 2.34 can be substituted into Equation 2.32 when desired. The second-order

approximation for rate is given by

F ′2(x) =
3F (x)−4F (x−h)+F (x−2h)

2h
(2.35)

where the subscript 2 denotes the second-order approximation. For the general case

formulation, as seen in [26], the approximation of a derivative using expansions can be

written as

∂qN

∂xq
≈

p∑
i=1

γiNi (2.36)
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where q denotes the derivative, p is the number of samples, γi is the ith coefficient, and

N is the function. When i = 1, it represents the first sample where as i = p represents

the current sample. Then the Taylor series expansion of Ni is

Ni = N∗+(xi−x∗)
∂N∗
∂x∗

+
1

2!
(xi−x∗)2 ∂

2N∗
∂x2
∗

+
1

3!
(xi−x∗)3 ∂

3N∗
∂x3
∗

+.... (2.37)

where the * subscript denotes the point at which the derivatives are desired. Substituting

Equation 2.37 into Equation 2.36 results in the expansion of the approximation

∂qN

∂xq
≈

p∑
i=1

γiNi =

p∑
i=1

γiN∗+

p∑
i=1

γi (xi−x∗)
∂N∗
∂x∗

+

p∑
i=1

γi
1

2!
(xi−x∗)2 ∂

2N∗
∂x2
∗

+.... (2.38)

From inspection, it can be seen that this expansion can be written in terms of partial

derivative coefficients

p∑
i=1

γiNi = B0N∗+B1
∂N∗
∂x∗

+B2
∂2N∗
∂x2
∗

+.... (2.39)

where

Bn =

p∑
i=1

γi (xi−x∗)n for n = 0, 1, ...., q−1 (2.40)

The factorial of n can be multiplied to the side of the coefficient Bn. By doing, it allows

for the formulation of a set of linear equations to solve for the function coefficients, γi.

A matrix representation, using Einstein notation, is given by

(k−1)!Bk = Akjγ
j (2.41)

where k is the row index and j is the column index. The transformation matrix, A, is

expressed as

Akj = (xp−j−x∗)(k−1) (2.42)

It can be noted, in the case for backward differencing, when k = 1 and j = p, the equation

is 00, which in this case, is equal to one. When solving for a desired derivative, q, set

Bq−1 = 1 and the rest to 0. For example, when wanting the second-order approximation
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for the first derivative using backward differencing, q = 3, p goes from 1 to 3, and j goes

from 1 to 3. The full matrix representation is
B0

B1

2B2

 =


1 1 1

(x2−x∗) (x1−x∗) (x0−x∗)

(x2−x∗)2 (x1−x∗)2 (x0−x∗)2



γ1

γ2

γ3


if the time between the second and third sample is equal, the single increment can be

given as before, h. The matrix form can be simplified by replaying the components of A

and by desiring the first derivative
0

1

0

 =


1 1 1

−2h h 0

(−2h)2 (−h)2 0



γ1

γ2

γ3


from this point, the system of equations can be solved. By replacing these quantities

and solving the system of equations, the solution is
γ1

γ2

γ3

 =


1

2h

−2
h

3
2h


Replacing these coefficients into the newly bounded Equation 2.36 gives

∂N

∂x
≈

3∑
i=1

γiNi =
1

2h
N1−

2

h
N2+

3

2h
N3

Recall that γ1 refers to the first sample while γ3 refers to the current sample. This means

that N1 = N−2, N2 = N−1, and N3 = N0. Manipulating to give a common denominator

results in

∂N

∂x
≈ N−2−4N−1+3N0

2h

This equation is exactly what was found in Equation 2.35. The same process can be

applied to any order of derivative approximation as well as other differencing methods.
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Figure 2.5: a) Depiction of Schmitt trigger changing function into a square signal output
(in ideal situations, ε+H = ε−H and ε+L = ε−L) and b) Example of Schmitt trigger on a noisy
repeating signal.

2.5 Schmitt Trigger and Thrust Limiter

While computing the required spacecraft command acceleration for the guidance

schemes herein, the given thruster’s output may not be able to fulfill the requirements

due the calculated thrust being higher than the maximum thrust available from thrusters.

A solution to help remedy this situation, as well as help reject noise, is to implement

a Schmitt trigger. Structure of this trigger can be seen in Figure 2.5 a). The Schmitt

trigger converts an input signal into a square function based off of an upper and lower

threshold. Once the upper threshold of the trigger is met, max threshold is commanded.

If the output falls below the lower threshold, the output is zero. By requiring the

information of the last step’s “on” or “off” command, the output then becomes delayed.

An illustration and example can be seen in Figure 2.5. In the repeating wave example in

Figure 2.5 b), it can be seen that, if the thruster is not throttleable, the trigger creates

a more reasonable thruster firing sequence. However, as previously stated, the firing

output is slightly delayed due to the thruster having to be switched on once the max

threshold is reached.
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Figure 2.6: An example showing the thrust limiter concept.

Another option to consider is to use a thruster limiter. This allows for the thrusters

to have a variable output which ranges from zero to device max. The needed command

acceleration from the guidance control scheme is used as input into the limiter. If the

needed acceleration is greater than what the device can handle, the max is allowed.

However, a disadvantage is that the thruster needs to have the ability to vary. Some

thrusters only operate under the fully on or off conditions. An example of a working

thruster limiter can be seen in Figure 2.6. A lower bound, if needed, may be applied. In

this case, the limiter would turn off once it is above the upper limit and below the lower

limit. This differs from the Schmitt trigger by the guidance scheme required acceleration

not having the need to reach the upper bound to switch on, but only needing to reach

the trigger’s lower limit.

2.6 Image Line-of-Sight

The image line-of-sight (LOS) is the directional vector from the spacecraft to the

target object, which is determined by the current estimated LOS given by trajectory

models, and the object’s pixel centroid located on the image plane. However, the camera

frame first needs to be established. Since the LOS vector and the spacecraft position
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Figure 2.7: Illustration of the spacecraft’s camera frame.

are known, the camera frame can be constructed. For simplicity, the image plane is

perpendicular to the line of sight vector and can be defined by the two unit vectors as

follows:

ŵ = Λ̂×rS
rS

and û = Λ̂×ŵ (2.43)

By using this definition, the transformation matrix which maps the camera frame

directly to the global frame is computed as

CI/A =
[
û, ŵ, Λ̂

]
3×3

=


u1 w1 Λ1

u2 w2 Λ2

u3 w3 Λ3

 (2.44)

where I represents the inertial frame, A represents the camera frame, and the subscripts

denote the components of its corresponding unit vector described by LOS and the per-

pendicular plane definition in 2.43. A depiction of the orientations can be seen in Figure

2.7. The camera frame plane, which is perpendicular to Λ̂ and parallel to the plane
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Table 2.1: Example of camera parameters with resulting pixel resolution

Camera 1 Camera 2 Camera 3 Camera 4
Resolution (m×n)(pixels) 1024 × 1024 1024 × 1024 512 × 512 256 × 256
Focal length (mm) 4000 1800 1800 1800
Sensor array size (U×W) (µm) 18 × 18 18 × 18 36 × 36 30 × 30
Horizontal
Field of View (FOVh) (radians) 4.61×10−3 10.2×10−3 5.1×10−3 4.3×10−3

Vertical
Field of View (FOVv) (radians) 4.61×10−3 10.2×10−3 5.1×10−3 4.3×10−3

Horizontal
pixel resolution at 100 km (m) 0.450 1.00 2.00 1.67
Vertical
pixel resolution at 100 km (m) 0.450 1.00 2.00 1.67

created by ŵ and û, is then broken up into a number of horizontal and vertical pixels.

Pixel count in the vertical and horizontal directions do not need to be equal. Each pixel

has a resolution at a certain distance, which is based off of the focal length of the system

when using a pinhole camera, and is given by

hpix =
‖r‖2 U

m F
and vpix =

‖r‖2W

n F
(2.45)

where hpix is the horizontal pixel resolution, vpix is the vertical pixel resolution, U is a

sensor array’s horizontal width, W is a sensor array’s vertical height, m is the number of

horizontal pixels, n is the amount of vertical pixels, and F is the system’s focal length.

Similarly, the pixel resolution can be found using the angular resolution incorporating

the vertical and horizontal field-of-views (FOV)

hpix =
2 ‖r‖2 tan

(
FOVh

2

)
m

and vpix =
2 ‖r‖2 tan

(
FOVv

2

)
n

(2.46)

where, in general, the FOV, using S as a sensor dimension length, can be found by

FOV = 2 atan

(
S

2F

)
(2.47)

Table 2.1 shows pixel resolution at different ranges for varying pixel arrays and focal

lengths. With this information and a pixel location for the object to target, the new
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Figure 2.8: Diagram illustrating the set up of the pixel and camera frame.

target location base from the image can be found as

r̃ = r−CI/A


(
Ox−m

2

)
hpix(

Oy−n
2

)
vpix

0

 (2.48)

where Ox and Oy are the horizontal and vertical targeted pixel location on the image.

Figure 2.8 illustrates the sensor array and pixel targeted location. As long as the ori-

entation of the pixel plane and the image coordinates remain parallel, ascending î and

ĵ are in the same direction as û and ŵ, the above equation holds. Further discussion

of how to determine the horizontal and vertical targeted location is found in Chapter 4.

The image LOS is then obtained as

Λ̂I = − r̃

‖r̃‖2

(2.49)

During the computation of the required spacecraft acceleration, Λ̂I replaces Λ̂. This

is the case for any of the guidance control schemes.
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CHAPTER 3. VISIBLE/INFRARED SENSOR MODELING

AND TERMINAL GUIDANCE SIMULATION FOR A

SINGLE KINETIC-ENERGY IMPACTOR VEHICLE

3.1 Introduction

The Asteroid Deflection Research Center (ADRC) at Iowa State University has been

developing a Hypervelocity Asteroid Intercept Vehicle (HAIV) concept to mitigate the

impact threat of hazardous asteroids with short warning time [31, 32, 33]. An illustra-

tion of the proposed HAIV terminal intercept scenario is provided in Figure 3.1. To

demonstrate the feasibility of such a mission, a scaled polyhedron model of 433 Eros

was used in [34] for a closed-loop optical navigation and guidance simulation study of

the HAIV concept. Similar concepts for hypervelocity asteroid intercepts using visual

imaging autonomous guidance have been considered, such as the Don Quijote mission

[35, 36], Asteroid Impact and Deflection Assessment (AIDA) [37], and the Impactor for

Surface and Interior Science (ISIS) [38]. Visual based guidance has been demonstrated

in [39] and [40]. However, when visual tracking of a target is not available, an IR tele-

scope/sensor might be required for a precision impact and mission success. It can be seen

in Figure 3.2 that size, with slight contribution from albedo, will affect the asteroid’s

signature in the IR regime, whereas for visible electromagnetic wavelengths, asteroid size

and albedo play a key role in object detection and observation.

An IR sensor array has been employed for the Exoatmospheric Kill Vehicle (EKV).

This vehicle is designed to intercept ballistic missiles at hypervelocity speeds [41]. The
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Leader S/C impacts and  

creates a shallow crater 

Follower S/C with NED 

enters crater and detonates 

• 300kg NED (≈ 300 kt) 

• 1,000-kg NED (≈ 1 Mt) 

• 1,500-kg -NED (≈ 2 Mt) 

 

 

Last TCM  

Impact - 60 sec 

Spacecraft 

Separation 

10 to 50 m 

Target  

Acquisition 

Impact - 2 hrs 

0.3 m/s 

10 km/s 

Impact + 1   5 msec 

Figure 3.1: A baseline terminal intercept scenario of a two-body HAIV carrying a nuclear
explosive device (NED).

on-board focal plane array used for EKV targeting consists of a 256 by 256 structure with

pixel pitch of 30 µm, which is sensitive to IR emission belonging to a wavelength range

of 7 to 30 micrometers [42]. During the EKV targeting process, the spacecraft receives

information from the long-wave IR sensor of the Space Based Infrared System (SBIRS)

in low Earth orbit. By using the SBIRS, the detection range of the system is said to

be about 107 kilometers for an object emitting 6×108 W/Ster. However, signal-to-noise

ratios (SNR) vary depending on the probability of detection [43]. The EKV houses a

30-centimeter diameter optical system, which, with the IR detector, has an approximate

detection range of 2000 kilometers [44].

It has been shown in [46] that physical models are needed to estimate the SNR for a

given detector and asteroid scenario in the N-band of IR wavelength. This formulation

used an alternative definition for the SNR. A reference IR telescope, the Wide-field

Infrared Survey Explorer (WISE), uses a Cassegrain-like primary mirror to collect signal

from objects of interest. A WISE telescope illustration can be seen in Figure 3.3 [47].

This chapter is based on the author’s journal article [45].
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Figure 3.2: Comparisons of optical and infrared images of asteroids with different sizes
and albedos. Image courtesy of http://wise.ssl.berkeley.edu/gallery_asteroid_
sizes.html.

Figure 3.3: Illustration of WISE telescope. Image courtesy of NASA/JPL.

http://wise.ssl.berkeley.edu/gallery_asteroid_sizes.html
http://wise.ssl.berkeley.edu/gallery_asteroid_sizes.html
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Figure 3.4: Classical Cassegrain telescope design.

3.2 Optics and Sensors

Three types of sensors, along with their optical configurations, are studied for possible

implementation to the HAIV. The instruments of interest herein are a visible band sensor,

an IR sensor, and a radar device. Typical parameters of these sensors are determined by

estimating the SNR, which corresponds to a minimum or maximum detection distance,

and characteristics of the optics to be implemented.

3.2.1 Classical Cassegrain Telescope

A classical Cassegrain telescope design is considered due to its simplicity and sim-

ilarity to the NEOWISE infrared telescope design. An illustration of the Cassegrain

telescope is given in Figure 3.4, which will be the basis of the instrument’s parameters.

Given an effective focal length, a primary mirror focal length and diameter, and a back

focus distance, telescope parameters are determined. It can be seen that baffling and

glare stops are not considered.
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A first parameter calculation can be done to determine the magnification of the

system, given both overall system and primary mirror focal lengths. The magnification

of the system is

M =
F

f1

(3.1)

where F and f1 are the system focal length and the primary mirror focal length. Once

magnification is calculated, other parameters of this system are found. Given the back

focus (distance from the primary mirror to the focal plane), b∗, the primary mirror focus

intercept point is found as

p =
F+b∗

M+1
(3.2)

The overall distance from the secondary mirror to the focal plane, also known as the

secondary to Cassegrain focus p′, is given by

p′ = pM (3.3)

From the Cassegrain focus, the mirror separation, B, is found as

B = p′−b∗ (3.4)

Another very important part of the Cassegrain telescope is to design the size of the

secondary mirror. This diameter, Ds, can be found as

Ds =
pDo

f1

+
BDp

f1M
(3.5)

where Dp is the minimum diameter of the image plane (not including thickness) and Do

is the primary mirror diameter. This correlates to the size of the imaging device, which

is equivalent to the minimum dimension of the array. Equations 3.2 and 3.5 are given in

Beish [48].
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The radius of curvature (ROC) is found for both, the primary mirror and secondary

mirror and is given by

R1 = 2f1 (3.6)

and

R2 =
2

1

p
− 1

p′

(3.7)

where R1 is the ROC for the primary mirror and R2 is the ROC for the secondary mirror

[49, 50]. By using the ROC of each mirror, the prescription for the two mirrors can be

found by the formulas

z1 =
y2

1

2R1

−b∗ (3.8)

z2 =
y2

2/R2

1+
√

1−(1+b2)(y2/R2)2
−(b∗+B) (3.9)

and

b2 =
−4M

(M−1)2
−1 (3.10)

where z1 and z2 are face locations of the mirrors when the image plane array is located

at the origin of a measurement, −Do
2
≤ y1 ≤ −D0

2
, and −Ds

2
≤ y2 ≤ −Ds

2
[50]. This is only

valid in the case of a Classical Cassegrain telescope.

3.2.2 Visible Band Sensor

A visible band sensor is characterized herein. The first step of estimating the SNR is

to integrate Planck’s law for black body radiation over the visible band of electromagnetic

spectrum, which gives the radiance. Figure 3.5 illustrates the black body curves for the

IR regime of interest for the electromagnetic spectrum. An assumption is made where

IR and visible waves are not transmitted through the body and only reflected energy
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Figure 3.5: Black body radiation for different temperature values in the IR regime.

and emitted energy are considered. Below is the formulation of radiance (Wm−2sr−1)

and irradiance (Wm−2) for reflected energy. Radiance is given by

LV si =

∫ λ2

λ1

2hc2

λ5

1

e
hc

kBTsunλ−1
dλ (3.11)

where the temperature of interest is that of the sun, h is the Planck’s constant (6.6260695710−34m2kgs−1),

c is the speed of light, kB is the Boltzmann constant (1.380648810−23m2kgs−2K−1), λ1

is the lower bound wavelength, and λ2 is the upper bound wavelength. Since this is cal-

culated, one must evaluate the radiance of the sun at the body, which is the irradiance

multiplied by the sun’s solid angle. A solid angel of an object is the area of its projection

onto a sphere with some arbitrary radius corresponding to the distance between objects

and is measured in steradians [52]. In this case, the radius is the distance from the sun

to the object. However, the radius can also be from the object to the spacecraft, as will

be used in the infrared situation. An assumption is made that the sun’s solid angle can

use a circular approximation, since the asteroid’s distance from the sun is much larger

than the radius of the sun. This leads to the incident irradiance at the object as

EV si = LV si
πr2

s

d2
s/obj

(3.12)
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where rs is the radius of the sun and ds/obj is the distance from the sun to the object.

The irradiance of the reflected electromagnetic waves, from the object as seen by the

spacecraft, is given by

EVreflected =
αV
π
EV siΩreflected (3.13)

where αV is the asteroid’s visible albedo, Ωreflected is the solid angle for reflected irra-

diance, and dobj/sc is the distance from the object to the spacecraft. The inclusion of a

factor of 1/π is due to the assumption of a Lambertian surface, which has a relation be-

tween irradiance and radiance due to the formulation of existence [51]. Since the reflected

energy’s irradiance is estimated, the emitted energy from the object must be calculated.

The emitted energy from the body is very similar to reflected energy obtained by an

integration of Planck’s law using the asteroid temperature. A typical asteroid temper-

ature, for objects approximately 1 AU away from the sun, is 300 K [53]. This will be

used later for detection distances and simulations. The equation for emitted radiance is

given by

LVemitted = εV

∫ λ2

λ1

2hc2

λ5

1

e
hc

kBTobjλ−1
dλ (3.14)

where εV is the object’s visible emissivity. This assumes that there is no transitivity,

which is the case for the infrared band as well. Once again, the irradiance can be found

by multiplying the radiance by the solid angle (circular approximation), as follows:

EVemitted = LVemittedΩemitted (3.15)

where Ωemitted is the solid angle for emitted irradiance. The total irradiance seen by the

spacecraft is then given by

EV = EVreflected+EVemitted (3.16)
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In general, the irradiance at the spacecraft from the visible emission can be neglected,

therefore EVemitted ≈ 0. From the irradiance, the photon flux, given in number of photons

per square meter per second, is calculated as follows:

ΦV =
EV λmax
hc

(3.17)

where λmax is the wavelength of peak emission, which is a function of Wien’s displacement

constant and the Sun’s temperature. By collecting the device parameters and the photon

flux at the device, the signal given on the pixel array in number of electrons is obtained

as

SVsignal = ΦV τoptηGV τintNπ

(
Do

2

)2

(3.18)

where aopt is a coefficient from the optics, τopt is the optics’ efficiency, η is the device’s

quantum efficiency, GV is the device’s photoconductive gain, τint is the device’s integra-

tion time, N is the number of image samples, and Do is the diameter of the primary

mirror or lens. A similar expression can be found in [54]. Equation 3.18 is also used in

IR signal formulation, which has IR specific variables. For the SNR to be calculated, the

estimated standard deviations of the noise are found. The shot noise characteristics of

the device are dictated by the following expression:

σVshot =
√
SVsignal (3.19)

where the standard deviation is in number of electrons and follows Poisson statistics.

Another noise contribution is caused by dark current. This noise also follows Poisson

statistics and also is dictated by Arrhenius equations in the form of D = κ1e
(κ2T ), where

T is the sensor temperature, κ2 represents a function of the activation energy of the

material, and κ1 is the dark count per pixel per second. Using pixel 3 information found

in [55], the parameters κ1 and κ2 can be calculated, which will be discussed later. These
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variables however, are sensor and pixel specific. The dark current standard deviation

can then be written as

σVdark =

√√√√κ1npixτintNe

(
κ2
Td

)
DV

(3.20)

where DV is the dark count to electron conversion gain found in [56], Td is the detector

temperature, and npix is the total number of pixels. Similar forms of Equations 3.19

and 3.20 are found in [61]. These equations will also be applied to the IR sensor. Since

these noise values are assumed to be statistically independent, the total noise standard

deviation is described as

σVnoise =
√
σ2
Vshot

+σ2
Vdark

+R2
r (3.21)

where Rr is the read-in noise. This value is usually given as an RMS value measured in

number of electrons. The final expression for the SNR in the visible band becomes

SNRV =
SVsignal
σVnoise

(3.22)

3.2.3 Infrared Sensor

Similar to the visible band sensor, the IR device is simulated by also using Planck’s

law of black body radiation, which is integrated over the infrared wavelengths. However,

the emissivity is taken into account. In Figure 3.5, black body radiation curves for

different asteroid temperatures are shown, and the band in a transparent blue represents

the infrared wavelengths of this study. Two types of infrared sensors will be discussed,

photon detectors and thermal detectors.

3.2.3.1 Photon Detector

Photon detectors collect photons at a certain wavelength and directly convert the

photons to a number of electrons with a device quantum efficiency. These electrons are
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Figure 3.6: A simple diagram of sensor pixel characteristics.

then interpreted by the sensor array electronics. A similar method to visible band sensor

SNR is followed for the photon detector. The radiance and irradiance for emitted and

reflected radiation are given as

LIRemitted = εIR

∫ λ2

λ1

2hc2

λ5

1

e
hc

kBTobjλ−1
dλ (3.23)

EIRemitted = LIRemittedΩemitted (3.24)

LIRsi =

∫ λ2

λ1

2hc2

λ5

1

e
hc

kBTsunλ−1
dλ (3.25)

EIRreflected =
αIR
π
LIRsiΩreflected

πr2
s

d2
s/obj

(3.26)

EIR = EIRemitted+EIRreflected (3.27)

where εIR is the IR emissivity of the object, αIR is the object’s IR albedo, λ1 and λ2 are

the IR lower and upper bound wavelengths. Note that these equations must be integrated

over the infrared spectrum regime of interest. To find the radiance for reflected energy

and emitted energy, they are not integrated over the visible spectrum like in Section

3.2.2, but over infrared wavelengths. Following similar steps from that of the visual

camera, the photon flux and signal are described as follows:
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ΦIR =
EIRλmax

hc
(3.28)

SIRsignal = ΦIRτoptηGIRτintNπ

(
Dmirror

2

)2

(3.29)

where the λmax is the wavelength of peak emission, which is a function of Wien’s dis-

placement constant and object’s temperature and GIR is the IR device gain. With signal

photons known, noise characteristics need to be developed.

Four types of noise sources are considered herein: shot noise, dark current noise,

Johnson noise, and generation-recombination noise. The standard deviations of each

noise can be described as

σIRshot =
√
SIRsignal (3.30)

Similarly, the dark current noise for the infrared sensor can be expressed int the Ar-

rhenius form. The parameters κ1 and κ2 are found by using material specific information.

For later comparison to the WISE telescope, a silicon arsenide (Si:Ar) detector is used.

Information regarding the dark current electron count per pixel can be found in [57].

However, the Si:Ar detector parameters are that of the James Web Space Telescope’s

(JWST) Mid-Infrared Instrument (MIRI). This will be discussed in a later section. The

dark current noise is then expressed as

σIRdark =

√√√√κ1npixτintNe

(
κ2
Td

)
DV

(3.31)

where again, DV is the dark count per electron gain for the detector. To reiterate, the

parameters κ1 and κ2 in the IR detector are not the same as in Section 3.2.2.

σIRjohnson =

√
2kBnpixTdρlyNG2

lxlzR2
spτint

(3.32)

where (lx, ly, lz) are pixel dimensions, Rsp is voltage to electron conversion, and ρ is the

resistivity. Typical values for Rsp can be found in [58]. The resistivity is the inverse
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of conductivity and is sensitive to detector temperature. Material information of the

Si:Ar detector at low temperatures is taken from [59]. In general, for semiconductors,

the resistivity follows an Arrhenius form [60]. An expression for ρ is

ρ = ρoe
Ea

kBe
Td (3.33)

where ρo is the resistivity as detector temperature goes to infinity, Ea is the material

activation energy given in election volts, and kBe is Boltzmann’s constant in electron

volts per Kelvin.

σIRGR = G
√

2ηΦIRτoptAdNτint (3.34)

where Ad is the area of the detector. Similar forms of Equations 3.30 through 3.34 can

be found in [61, 62]. An illustration of a simple sensor pixel can be seen in Figure 3.6. If

the noises are assumed to be statistically independent of each other, then the total noise

standard deviation for the infrared regime is given by

σIR =
√
σ2
IRshot

+σ2
IRdark

+σ2
IRjohnson

+σ2
IRGR

(3.35)

From the formulated IR signal and noise equations, the SNR in the infrared band of

interest takes the same form as that of the visible band, which is the ratio of estimated

signal to the calculated noise standard deviation, given by

SNRIR =
SIRsignal
σIR

(3.36)

3.2.3.2 Thermal Detector

The thermal detector operates by detecting the temperature of incident radiation.

Radiation illuminates a sensitive material and causes a temperature change, which is

detected as a voltage that differs from the detector’s bias voltage and then incorporated

into the sensor array’s electronics. A depiction of a thermal detector can bee seen in Fig-

ure 3.8. This detector can operate at temperatures higher than photon detectors, which
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Figure 3.7: Computer generated Bennu polyhedron model with shadowing.

in general, means that there is no device cooling. However, there could be drawbacks

when high SNR are desired. Conveniently, the thermal detector uses the same irradiance

which was calculated for the photon detector, EIR. By using the irradiance value and

the telescope aperture area, the incident power on the pixel array can be determined by

Pi =
EIRτoptπ (Do)

2

4npix
(3.37)

where Pi is the incident power per pixel on the sensitive element. This power will

be needed when calculating the SNR. Since the incident power is estimated, the noise

equivalent power (NEP) for each pixel must be found. The expression for the NEP found

in [63] is

NEP =
Vn
Rv

(3.38)
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where Vn is the noise voltage and Rv(V/W) is the voltage responsivity of the detector.

The voltage responsivity is calculated in [60] by

Rv =
αBVB

Gth

√
1+ω2

Chτ
2
th

(3.39)

where αB is the materials temperature coefficient of resistance (TCR) and is negative for

semiconductors, VB is the device’s biased voltage, Gth(W/K) is the thermal conductance

, ωCh is the chopper frequency, and τth is the thermal time constant. Now that the

responsivity is found, the only portion of the NEP unknown is the noise voltage.

The noise voltage has three dominating sources for a microbolometer. These three

are 1/f noise, Johnson Noise, and temperature fluctuation noise [Cite IR book]. An

expression for a normalized 1/f noise is given in [60] and [64] as

V 2
n1/f

= VB
n

f
(3.40)

where n is the material dependent factor and f is a frequency. This equation can also be

expressed as a non-normalized equality, which incorporates the device integration time

and measuring time. The expression in [60] and similarly in [65], which uses bandwidth,

gives

V1/f = VB

√
nln

(
2tO
ti

)
(3.41)

where tO is the observation time, which is usually set as the time between shutter actions

and ti is the integration time for the detector process. As it can be seen, the integration

time can never be two times longer than the observation time nor the observation time

half that of the integration time.

Johnson noise voltage, as given in [60] and [66], is

VJ =

√
2kBTdRd

ti
(3.42)

where Td is the cell’s temperature (similar to photon detectors) and Rd is the cell’s

resistance at the device temperature. The third major contributing noise voltage is from



www.manaraa.com

41

Figure 3.8: Microbolometer detector illustration.

the temperature fluctuation. This expression, after equation substitutions, is given in

[60] by

VTF = Rv

√
4εkBσT 2

dAp+kBGthT 2
d

τth
(3.43)

where σ is the Stefan-Boltzmann constant (5.670373×10−8Wm−2K−4) and Ap is the

area of a microbolometer pixel. Since the three major contributing noise voltages are

estimated, the total noise voltage calculated. These noises are assumed to be statistically

independent. Therefore, the total noise voltage is given by

Vn =
√
V 2

1/f+V
2
J +V 2

TF (3.44)

All of the components have been found for the NEP. With the NEP, the SNR can be

found by dividing the incident power on the pixel by the NEP [67]. It was also shown

in [68] that averaging the number of exposures increases the SNR by a factor of the

square-root of the number of exposures. The expression is given by

SNRIR =
√
N

Pi
NEP

(3.45)

3.2.4 Image Rendering and Solid-Angle Approximation

The visual camera is simulated by incorporating the albedo of a given target and

assigning values to polyhedron shape model faces according to the direction of the sun
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Figure 3.9: Computer-generated 67P/Churyumov-Gerasimenko polyhedron model with
shadowing.

vector with the asteroid. This sun vector, ŝ, is the unit vector pointing from the sun to

the target [18], which is found by

ŝ =
rT
‖rT‖2

(3.46)

Witht this direction to the target define, each polyhedron face coefficient is described as

Ci =


kd (n̂i·−ŝ)+ka if (n̂i·−ŝ) > 0

0 if (n̂i·−ŝ) ≤ 0

(3.47)

where i is the face index, n̂i is the outward pointing unit normal vector of each face, kd is

the diffuse lighting coefficient associated with the object’s albedo, and ka is the ambient

lighting coefficient. By using this vector, including a ray trace algorithm for shadowing,

and exploiting the advantages of parallel computing, realistic images can be generated
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Figure 3.10: Depiction of jth face intersecting a vector to the ith face.

Figure 3.11: The face and vertex vectors of asteroid polyhedron model. Coordinates of
each face are relative to the center-of-mass of the object.

quickly. Such images can be seen in Figures 3.7 and 3.9. These images, however, are

computed in greyscale.

These computer generated images are depictions of Bennu and Comet 67P/C-G,

which are taken at different times within a simulation where the respective body is

rotating about a reference axis. As can be seen in these figures, there is crater shadowing.

The shadowing is obtained by a GPU-accelerated ray tracing algorithm. By applying

this algorithm, the face coefficient for any given face i becomes zero under the following

condition: there exists a face j that intersects the vector from the sun to the ith face,

where the intersecting jth face is located between the sun and the ith face. An illustration

of the face intersection can be seen in Figure 3.10. This shadowing effect will help

simulating landing on a target or tracking rendezvous locations.
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After the coefficients for the visible faces of the polyhedron are calculated, the solid

angle for an extended object can be found. This can be done by projecting the triangular

faces visible to the spacecraft onto a plane that is perpendicular to the line-of-sight vector

and summing the areas of these projected faces. Figure 3.11 shows the vectors associated

with the ith face vertex. The equations for the projected ith face’s vertex vectors are given

by

r′1i = r1i−
(
r1i·Λ̂

)
Λ̂ (3.48)

r′2i = r2i−
(
r2i·Λ̂

)
Λ̂ (3.49)

r′3i = r3i−
(
r3i·Λ̂

)
Λ̂ (3.50)

where r1i, r2i, and r3i are the ith face’s vertices, Λ̂ is the line-of-sight from the spacecraft

to the asteroid, and r′1i through r′3i are the projected faces. With the projected vertices

found, the areas of each triangular face can be calculated. Each ith faces’ area is given

by

Si =
| (r′3i−r′1i)×(r′3i−r′2i) |

2
(3.51)

where Si is the area of the ith face corresponding to it’s projected triangle. The sum of

all the visible triangles’ area becomes the solid angle as

Ω ≈

n∑
i=1

Si

‖r‖2
2

(3.52)

where Ω is the object’s solid angle and n is the total number of visible faces. This is done

for both the emitted and reflected portions of the irradiance, which would give Ωemitted

and Ωreflected. Note that this approximation only holds when the radius of the object is

much smaller than the distance between itself and the spacecraft, ‖r‖2.
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Figure 3.12: Depiction of γ angle, where the axis are of the sun-fixed frame.

Reflected irradiance solid angle is calculated on the GPU by finding the surface area

of each triangle that can be seen by both the sun and the spacecraft. These are the

intersection faces of both the views. Emitted irradiance solid angle is calculated in a

similar manner. However, the triangular areas needed are only from those viewed by the

spacecraft. The process for finding the solid angle approximation is done at each time

step.

However, when such tools are not available, the solid angle can be estimated using

a circular approximation of the object. This can be done by using the angle created by

the sun, asteroid, and spacecraft, γ, which can be seen in Figure 3.12, the distance from

the spacecraft and the asteroid, as well as the asteroid’s radius. The approximation is

as follows

Ω ≈ cos
(γ

2

) πr2
obj

‖r‖2
2

(3.53)

where robj is the radius of the object given in the same units as the distance from the

spacecraft to the asteroid, |xR|. When considering the emitted case, the angle γ, which

is then the angle of the source (asteroid) and the receiver (spacecraft), is zero.
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Figure 3.13: Illustration of a monostatic radar system (not to scale).

3.2.5 Radar

Object range determination for a monostatic system (transmitter and receiver are

collocated) is found. An illustration of a monostatic system is depicted in Figure 3.13.

The radar expression is manipulated to find the maximum detection distance. A min-

imum detection distance is also required since there is a transition from the near-field

to the far-field of the signal. The transition distance from the near-field to the far-field

is given in [69]. There is still signal received in the near-field, but may give incorrect

values. These two equations are given by

Rmax = 4

√
PtKlosses(GR)2λ2

R σR (NR)1/2

(4π)3kBTe ∆f (SNRR)
(3.54)

Rmin =
2D2

R

λR
(3.55)

where Pt is the peak pulse power transmitted, Klosses are the losses of the device, GR is

the antenna gain, λR is the radar wavelength, σR is the object’s radar cross section, NR

is the number of samples, Te is the equivalent noise temperature, ∆f is the bandwidth,

(SNRR) is the desired signal-to-noise ratio, and DR is the primary signal-collecting dish’s
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diameter (assuming a circular dish). Variables of other devices should not be confused

with radar parameters.

3.3 Sensor Comparison and Simulation Results

3.3.1 Sensor Comparison

Comparison of the sensing devices discussed in the preceding sections is provided

herein. This entails the asteroid’s detection distance, which corresponds to device’s

SNR, and image representation given SNR values. These images are plotted using a

Matlab program and the calculated standard deviation of the noise.

3.3.1.1 WISE Telescope Comparison

Parameters for the WISE telescope are used to compare with literature and visible

band sensors. These parameters for the Si:Ar detector and optics can be found in [57,

70, 71]. By using a detector temperature of 8 Kelvin, integration time of 8.8 seconds,

and other parameters of the Si:Ar detector and WISE optics, it was found that a 250

meter diameter object could be detected with a SNR of 5 at approximately 0.5 AU. This

confirms what is stated in [72]. However, a few assumptions are made for the asteroid:

the asteroid is spherical, has an emissivity of 0.9, which is similar to values in [73, 74],

but is lower than values given in [75, 76], and has a β coefficient value of one. Figure

3.14 shows the detection distance compared to a telescope with comparable optics. The

visible band sensor has a read noise of 10 e−/sec/pixel RMS, detector temperature of

approximately 230 Kelvin, integration time of 8.8 seconds, and other parameters to that

of the IR sensor and optics. It can be seen that the detection distance is linear with the

asteroid diameter. This is due to the solid angle approximation using a circumscribing

sphere.
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Figure 3.14: Detection distances vs. asteroid diameter of IR and visible band sensors
using WISE telescope parameters.
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Table 3.1: Visible band sensor design results and asteroid parameters

Instrument Asteroid
Characteristics Value Parameters Value

F 1.35 m Tast 300 K
M 8 rast 25 m
Do 0.2 m ds/obj 1.496e8 km
b∗ 0.0115 m dobj/sc ≈ 7.75e5 km
η 0.7 α 0.25
GV 6.83 β 1
τoptics 0.504
N 1
τint 1 sec
Td 230 K
Rr 10 e/pix/sec
Dv 2.8 DN/e
κ1 1.03212649e7 DN/pix/sec
κ2 −3752.58 K
npix 1024×1024 =

1048576 pixels
Pixel Pitch 18µm
λ1, λ2 380, 800 nm

3.3.1.2 Infrared and Visible Band Sensor Comparison

Various parameter values of the visible and IR detection devices are kept very similar

to those of the NEOWISE telescope, except for a reduction in primary mirror size and

operating temperature. By using the formulation for the signal-to-noise ratio and the

values given in Tables 3.1 and 3.2, the results for the SNR value of approximately 5 are

provided in Tables 3.4 and 3.5. Results illustrate the geometric pixel fill corresponding

to the largest dimension of the object, as well as the visual magnitude. These tables

show that the geometric pixel fill of the object is less than one, which means there is

no object detail resolved but detected. The visual magnitude is calculated from the flux

density of the object in both IR and visible wavelengths. In both cases, the reference

celestial object is Vega, with an assumed visual magnitude of 0.03 (N band and visual

band).



www.manaraa.com

50

Table 3.2: IR device design results and asteroid parameters

Instrument Asteroid
Characteristics Value Parameters Value

F 1.35 m Tast 300 K
M 8 rast 25 m
Do 0.2 m ds/obj 1.496e8 km
b∗ 0.0115 m dobj/sc ≈ 7.55e5 km
η 0.7 ε 0.9
GIR 6.83 β 1
τoptics 0.504
N 1
τint 1 sec
Td 10 K
κ1 8.5057355e13 e/pix/sec
κ2 −225.5617 K
Ea 0.01943 eV
Rsp 0.5e−6 V/e
ρo 7.99742e−9 Ω m
npix 1024×1024 =

1048576 pixels
Pixel Pitch 18µm
λ1, λ2 7.5, 16.5µm

Table 3.3: IR Thermal device design results and asteroid parameters

Instrument Asteroid
Characteristics Value Parameters Value

F 4 m Tast 300 K
M 4 rast 25 m
Do 0.8 m ds/obj 1.496e8 km
b∗ 0.08m dobj/sc 70.19 km
τth 1.1×10−3 s ε 0.9
τopt .8
ti 1.0 s
to 1.1 s
N 100
VB 0.5 V
Gth 1.02×10−7 W/K
npix 1024×1024 =

1048576 pixels
Rd 1.577e05Ω

Pixel Pitch 18µm
Td 213.9K

λ1, λ2 7.5, 16.5µm
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Table 3.4: Asteroid detection results for a visible band sensor

Parameters Value
Geometric Optics Pixel Fill <1

Visual Magnitude ≈ 12.5
SNRV ≈ 10.06

Table 3.5: Asteroid detection results for an IR sensor

Parameters Value
Geometric Optics Pixel Fill <1
Visual Magnitude (N band) ≈ 4.47

SNRIR ≈ 10.04

Notice, the distance from the object to the spacecraft is almost identical between the

visible band and IR sensor. This means that the IR device can detect a 50-meter object,

with N band emissivity of 0.9, at about the same distance as the visual device. The

detection distances using an IR sensor are not as great as the visible band sensor, which

is primarily due to the increase of operation temperature. Moreover, in the visible band,

the albedo of the asteroid is set at 0.25, which is a high value for an asteroid. If the phase

angle were to be increased, correlating to a smaller β coefficient, the visible band sensor

would not out perform the IR sensor for these instrument characteristics. With these

parameters, the detection distances and selected asteroid sizes can be seen in Figure 3.15.

In these plots, the lines for detection distance are linear due to the assumption of the

solid angle being subtended by a circular approximation, along with other approximations

using polyhedron face plane projections. The microbolometer thermal device array was

not plotted due to the poor performance. Parameters and results for the thermal device

can be seen in Table 3.3. It can be seen that this device can detect the asteroid at a

distance of approximately 70 km, which is not appropriate for the terminal guidance

specifications and will not be considered further in this study. This is primarily due to

the resistance increase in the semiconductor with the decrease of operation temperature.

When the temperature decreases below 213.9 Kelvin, the SNR begins to increase. A

possible solution is to use a different material than non-hydrogenated amorphous silicon.
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Figure 3.15: Detection distances vs. asteroid diameter of IR and visible band sensors.

Table 3.6: A reference radar design

Instrument
Characteristics Value

Pt 500 W
Klosses 0.55
scale 1/10
GR 8.0568e5

λR (scaled) 3.5 mm
σR (scaled) 340 m2

NR 1000
ts (Pulse Width) 1µs

Te 70 K
∆f(1/ts) 1.0e6 Hz
(SNRR) 10
DR 1 m
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Figure 3.16: Examples of IR and visible band sensor images at 60 seconds prior to final
impact.

As stated previously, parameters of the radar device are different from the other two

sensing devices. By using the equations describing the radar, an estimation of minimum

and maximum detection distances can be found. A scaled Bennu model is used here to

evaluate the radar performance. Bennu is scaled by 1/10, resulting in a diameter around

50 meters. When scaling Bennu, the transmitted signal’s wavelength must also be scaled

by the same factor, if similar detection distances are desired. At a wavelength of 3.5 cm,

a unscaled Bennu has a radar cross-section of 3.4×104 m2, which correlates to a scaled

σr of 340 meters and a wavelength of 3.5 mm. This creates a needed wavelength that is

near the edge of the radar regime of the electromagnetic spectrum but is still obtainable.

By using the values in Table 3.6, the radar equations result in a maximum detection

distance of 9.062×102 km. However, the minimum distance is dictated by the far-field

and near-field transition, if there are no filtering techniques applied. This minimum

distance before near-field transition measures 571 meters. Rendezvousing with a target

body and landing on its surface would need a radar device that has a lower minimum

detection range.
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Table 3.7: Comparison of IR and visible band sensors during asteroid intercept phase
(optical components are the same as in previous comparison)

Simulation
Results IR Visible
dobj/sc at
2 hours 7.2e4 km 7.2e4 km

Visual Magnitude at
2 hours −0.654 7.312

Geom. Pixel Fill at
2 hours < 1 < 1
SNR at
2 hours 1.098e3 1.105e3

dobj/sc at
60 seconds 600 km 600 km

Visual Magnitude at
60 seconds −11.10 −3.134

Geom. Pixel Fill at
60 seconds ≈ 7 ≈ 7

SNR at
60 seconds 1.09e6 4.145e5

3.3.2 Terminal Guidance Simulation Results

Hypervelocity intercept missions are simulated using a scaled 433 Eros polyhedron

model. The points of interest are at two hours and 60 seconds before impact. Figure 3.16

compares the visible band and infrared sensors at 60 seconds before asteroid intercept.

These simulated images were obtained by using the parameters given in Table 3.1 and

Table 3.2, along with Cassegrain telescope design. It can be seen that the asteroid does

not fill many pixels on the sensor array. The calculated amount of pixels filled for the

maximum dimension of the asteroid can be seen in Table 3.7. This table also includes

the SNR for both times of interest. Two hours before impact, each sensor array displays

sub-pixel pixel fill. However, at 60 seconds before impact, the horizontal pixel fill is

at approximately 37 pixels. In both the sensor scenarios, 2 hours or 60 seconds before

impact, the pixel fill does not provide detailed target images.
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Figure 3.17: Control acceleration time history of an IR-based terminal guidance system
(t=0 implies 2 hours before impact).

Figure 3.18: Mission specific variables vs. time (or pixel centroid locations) for an IR-
based terminal guidance system (t=0 implies 2 hours before impact).
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It can be seen that the SNRs at two hours before impact are quite different for

both devices. At this point, the IR device can discern the asteroid, whereas the visual

device does not have an adequate SNR. This shows for lower albedo asteroids, which are

small and have higher emissivity, that the IR device may out-perform the visual device.

Consequently, the guidance algorithms use the information from the IR device and radar.

Radar is used once the distance from the asteroid to the spacecraft is sufficient for radar

detection, which was stated to be about 900 km.

For the guidance simulations, a hybrid algorithm is used. This includes kinematic in-

tercept guidance, which uses predetermined control pulses and proportional navigation.

During the beginning of the terminal phase of the mission, the spacecraft undergoes

kinematic impulse guidance, and once a sufficient amount of pixels is filled on the sen-

sor array by the target, the guidance algorithm is switched to proportional navigation

guidance to ensure mission success. A depiction of the control accelerations can be seen

in Figure 3.17. Spacecraft ∆v requirements and other mission specifications can be seen

in Figure 3.18. For this scenario, the velocity requirement is small, because this is done

during the terminal phase of the mission. These requirements assume that the major

trajectory maneuvers have been completed prior to the terminal phase. The resulting

intercept speed is approximately 10 kilometers per second.

Using this same control acceleration, at 60 seconds before impact, the spacecraft

will separate into a fore and aft body system[77]. At this separation time, a position

and velocity error are placed on the fore and aft bodies. This simulation is conducted

3,000 times. After these simulations, approximately 98.5 percent of the fore bodies and

98.7 percent of the aft bodies impact in the IR case. In comparison, only 93.4 percent

impacted of both fore and aft bodies for the visible case. A depiction of these simulations

are shown in Figure 3.19. This figure, green dots represent the fore body, while red dots

represent the aft body. In this scenario, the impact percentage utilizing an IR sensor

barely out performed the visual camera case. This is due to the sun-asteroid-spacecraft
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Figure 3.19: Monte Carlo simulation result for intercepting a 50-meter asteroid using an
IR-based terminal guidance system.

phase angle. If the β coefficient were to be closer to zero, larger phase angle, less light

would be illuminating the surface of the asteroid in the spacecraft’s line-of-sight, which

would cause a lower percentage of successful impacts.

3.4 Conclusion

In this chapter, the signal-to-noise ratio estimation and detection distance estima-

tion for IR and visible band sensing devices have been examined for asteroid inter-

cept/rendezvous applications. In addition, estimation of the solid angle of an object

due to shadowing was studied, which relates to object irradiance. By following the pro-

cedures described within this chapter, maximum detection distances were found for all

three sensing devices. These distances, corresponding to a 50-meter asteroid, were esti-

mated to be 7.75×105 km for the the visual device, 7.55×105 km for the IR device, and

906.2 km for the radar. These results show that for an asteroid with an IR emissivity of

0.9 and a visible albedo of 0.25, the IR sensing device detects the asteroid at a distance

approximately the same as the visible band sensing device. To evaluate the performance
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of a terminal guidance system equipped with such sensors, Monte Carlo simulations were

performed, which resulted in approximately 98.5% impact success using an IR device and

only 93.4% for a visual device. Further research must consider more accurate solid angle

approximations, as well as device functionality in close asteroid proximity situations and

asteroid polyhedron gravitation.
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CHAPTER 4. TERMINAL GUIDANCE SYSTEM

MODELING AND SIMULATION FOR A MULTIPLE

KINETIC-ENERGY IMPACTOR VEHICLE (MKIV)

4.1 Introduction

NASA’s Deep Impact mission to intercept a 5-km comet by a kinetic-energy impactor

has been successfully accomplished in 2005. Its terminal guidance system used visual

cameras and preplanned trajectory maneuvers to intercept Comet 9P/Tempel (Comet

Tempel 1). An observer spacecraft performed a flyby of the comet while the impactor

spacecraft collided with the comet at 10.2 km/s [40].

On a smaller scale, systems have been designed to intercept ballistic missiles, along

with any decoy objects. Missile defense organizations and companies have been devel-

oping several innovative solutions to intercepting ballistic missiles in the presence of

interceptor decoys [78, 79]. One such example is the Multiple Kill Vehicles (MKVs)

designed by Lockheed Martin and Raytheon Company. A MKV system architecture by

Lockheed Martin uses a Carrier Vehicle (CV) containing smaller Kill Vehicles (KVs) to

intercept ballistic missiles [80, 81]. Several KVs detach from the CV, obtain orientation

information, and position information of themselves as well as the CV. While target

acquisition impact locations are determined on-board the CV for the KVs, each KV re-

mains in contact with the CV. Commands calculated by the CV will be distributed to

the KVs, which incorporate the decoys or target positions. Each KV has “minimal func-

tionality,” which includes sensors and actuators. A mono-camera system suffers due to
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Figure 4.1: Illustration of the MKIV concept [14].

the potential of important targets leaving the view of the CV. However, another MKV

architecture by Raytheon incorporates a targeting system on each KV, including the

CV. All vehicles communicate amongst each other to identify and intercept the ballistic

missile, in addition to decoys.

In [14], a Multiple Kinetic-energy Impactor Vehicle (MKIV) concept was proposed

for effective disruption or pulverization of small asteroids without using nuclear explosive

devices (NEDs). Similar to the MKV system architectures briefly described above, we

can consider two types of the MKIV concept. Either concept could be used for a single

target or multiple targets. The single target case would have multiple KEIs intercepting a

single asteroid target. For the concept and visualization, refer to Figure 4.1. Preliminary

MKIV impact simulation study results based on a GPU-accelerated hydrodynamics code

are presented in [13, 82].

This chapter will focus on image processing algorithms for such coordinated terminal

guidance and control of multiple KEIs. GPU-based simulation results of the proposed

image processing algorithm will be discussed to verify the feasibility of impacting a small
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asteroid by multiple KEIs. Simulation results using noiseless as well as noisy visible

band and IR images will be presented for scaled polyhedron models of 433 Eros and 216

Kleopatra. These images are needed to estimate the line-of-sight (LOS) for each KEI to

its respective impact location. The preliminary results presented within this chapter will

support that it is technically feasible to impact a small asteroid near-simultaneously at

its multiple locations using the proposed MKIV system architecture.

4.2 Noiseless Image Processing and Line-of-Sight

Determination

The noiseless situation arises in the most ideal image array cases. This scenario

considers the best case and test bed for calculating line-of-sight (LOS) to the target or

targets along with the needed digital image processing. Two cases are considered when

impacting a single asteroid: single KEI or a MKIV with only the CV equipped with an

asteroid targeting device.

4.2.1 Single Kinetic-Energy Impactor

A single KEI case occurs when only one impactor is sent to intercept and fragment

the target. In the noiseless image case, the target may appear as seen in Figure 4.2.

This is a depiction of a scaled 433 Eros, but other scaled models will be used to show

the robustness of the multi-impact algorithm. There is no noise associated with the

pixels on the image array. Pixel illumination occurs only when signal from the target is

present. The center of figure (COF), infrared sensor, or center of bright (COB), visible

band sensor, may be determined from this image. By using pixel values on the sensor

array, the COF and COB are determined as

OxCOB =

∑n
i=1

∑m
j=1 G(i, j) j

n m
if G(i, j) ≥ ξCOB (4.1)
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Figure 4.2: Noiseless visible band (left) and IR (right) images of 433 Eros used for
terminal guidance simulation.

OyCOB =

∑n
i=1

∑m
j=1 G(i, j) i

n m
if G(i, j) ≥ ξCOB (4.2)

OxCOF =

∑n
i=1

∑m
j=1 j

n m
if G(i, j) ≥ ξCOF (4.3)

OyCOF =

∑n
i=1

∑m
j=1 i

n m
if G(i, j) ≥ ξCOF (4.4)

where Ox and Oy are the IR or visible band image’s horizontal and vertical centroid

pixel location, n is the horizontal number of pixels, m is the vertical number of pixels,

i is the horizontal pixel location, j is vertical pixel location, G(i, j) is value of image at

horizontal and vertical pixel coordinate, and ξCOB and ξCOF are image pixel minimum

inclusion limits. These limits are significant when calculating COB and COF for an image

with the inclusion of noise. Recall that the basic structure and camera formulations are

discussed in Chapter 2. For simplicity, in later sections the subscripts of COB and COF

are dropped due to the estimation of multiple impact locations.
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4.2.2 Multiple Kinetic-Energy Impactors

The MKIV architecture explores the use of a single spacecraft platform which detaches

multiple KEIs. Each KEI communicates with the main spacecraft, called the CV. Due

to communication, the CV is the only spacecraft that is required to carry an asteroid

targeting sensor device. Doing so will cause multiple KEIs to impact over the asteroid’s

surface and cause distributed damage. An illustration of the intercept concept can be

seen in Figure 4.1. These varying locations of impact are difficult to determine when

the shape of the target is not well known. However, these locations can be found by

implementing digital image processing.

4.2.3 KEI Impact-Location Determination

When an image of a target body is obtained, the target-body image is split into

chunks according to the size of the asteroid, the orientation, and the number of KEIs

impacting the target. The COB or COF locations found in Section 2.1 are used to

separate the image into either an upper and lower image (horizontal split) or a left and

right image (vertical split). By dividing the image, half of the impactors impact one side

where as the other half impact the opposite side. To determine whether the image is

split horizontally or vertically, the following criterion must be met

ymax−Oy

xmax−xmin
≥ 1

2
(horizontal split) (4.5)

where ymax is maximum vertical pixel that the asteroid fills in the upper half of the

image, and xmin and xmax are the minimum and maximum horizontal pixels that are

filled by the asteroid. If this criterion is not met, the image is split vertically.

Once the image has been split, the number of impact channels can be determined,

along with the half-image asteroid pixel fill number. Impact channels limit the number
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Figure 4.3: Upper image analysis for a 9-impact situation (1 CV and 8 KEIs). Red
square indicates the COF and CV impact location, blue horizontal lines indicate the
impact channel boundaries, black vertical lines are the chunk centroid boundaries, yel-
low rectangles are KEI impact locations, and orange arrows indicate the image plane
targeting vectors. Image is not proportionate to actual situation.
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of rows on the asteroid’s image that the impactors will be allowed to impact in. The

maximum number of channels can be calculated as

NChannel =
Ncr−1

2
−FLOOR

(
Ncr−1

4

)
(4.6)

where NChannel is the number of impact channels and Ncr is the number of impactor

spacecrafts. This equation only holds when there are an odd number of impactors,

which includes the main body impactor impacting at the center of figure of the target.

For a general purpose, Equation 4.6 can be used for the total number of impact channels.

The number of impactors in each channel can be calculated as

Nkcraft = NINT

(
AkChannel(Ncr−1)

2 Ahalf

)
(4.7)

where Nkcraft is the number of impactors in the kth channel, AkChannel is the asteroid pixel

area of the kth channel, and Ahalf is the pixel area of the asteroid on half the image.

Once the number impactors are determined for each channel, the impact location can

be calculated. Dividing the kth channel area by the number of kth channel impacting

spacecrafts results in an impact area estimation. This area is the criterion for placing

an impact location. The algorithm determines the asteroid’s image filled pixels in each

channel. After the pixel area reaches the divided channel’s area, an impact location is

placed in the centroid of the channel sector. The centroid estimation for the channel

sector and the upper half of the image is then processed as

Ox(k,N) =

∑xeN
j=xsN

∑Oy+k ymax
NChannel

i=Oy+(k−1) ymax
NChannel

j

(xeN−xsN)
(

ymax
NChannel

) if G(i, j) ≥ ξ (4.8)

Oy(k,N) =

∑xeN
j=xsN

∑Oy+k ymax
NChannel

i=Oy+(k−1) ymax
NChannel

i

(xeN−xsN)
(

ymax
NChannel

) if G(i, j) ≥ ξ (4.9)
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dk,N =


(
Ox(k,N)−m

2

)
hpix(

Oy(k,N)−n
2

)
vpix

0

 (4.10)

where k is the channel number, N is the KEI number within the channel, xsN is the

starting x-value pixel for the Nth spacecraft impact location in the kth channel, xeN is

the ending x-value pixel for the Nth spacecraft impact location in the kth channel, hpix is

estimated horizontal pixel resolution in meters, vpix is estimated vertical pixel resolution

in meter, m is the vertical number of sensor pixels, n is the horizontal number of pixels,

and dk,N is the deviation vector for each impactor intercept location in the camera frame.

The starting location of the (N+1)th spacecraft, in general, is the ending x-value for the

Nth spacecraft. Note, this is the formulation for only the upper half of the image. A

similar process can be done for the bottom of the image and when the image is separated

into right and left instead of upper and lower halves. A depiction of the impact channels,

channel subdivision, and centroid corresponding to an upper and lower half split can be

seen in Figure 4.3.

Once an impact location is calculated for all impactors, the locations need to be

related to the corresponding LOS. This is simply done by taking the coordinates of the

centroids and transforming them into the inertial reference frame. The estimated LOS

pointing vector for each spacecraft is then

Λ̂ =
rT−rsck,N+CI/Adk,N∣∣∣∣rT−rsck,N+CI/Adk,N

∣∣∣∣ (4.11)

where rT is the target’s estimated location in the inertial frame, rsck,N is the inertial

location of the Nth impactor spacecraft in the kth channel, and CI/A is the transformation

matrix from the camera frame, A, to the inertial frame, I.
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Figure 4.4: Probabilities of each binned histogram location point, Pi. All other combi-
nations not listed result in a 0% peak probability.

4.3 Image Processing and LOS Determination With Noise

Gaussian random noise, with zero mean, is added to the noiseless image, G, using

a conversion of a random uniform distribution to random normal distribution by Box-

Muller transform [83]. The standard deviation of the noise is determined from the amount

of electrons excited by the target and device parameters. Such parameters and processes

can be found in [84]. Once the full image is simulated, the actual object on the image

plane must be detected and other image noise eliminated. Once the objects are detected,

the targeting of the asteroid is the same as the noiseless system.

4.3.1 Object Detection and Elimination of Noise

The noisy image, W, is first subjected to a median filter, converted into greyscale, and

converted into a binary image. Otsu’s method is used to determine an initial thresholding

limit, Po. The values of the greyscale image (GSI) range from 0 to 255, and the values for

the normalized greyscale image (NGSI) range from 0 to 1. Otsu’s method is described

in detail in [85]. However, in most cases, Otsu’s method finds a lower thresholding limit

than what is desired when trying to eliminate noise. A solution is to use Otsu’s method

threshold value, which is normalized by 256, to help find a higher threshold. By binning

the GSI information into a 32 bin collection, peaks may be found. Figure 4.4 depicts

how to decide if the histogram value is a peak, which is similar to [86], where histogram

valleys are found. If the peak falls into the probability being greater or equal to 75
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Figure 4.5: Thresholding logic for calculating the final binary threshold, PF .
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Figure 4.6: Noise cancellation, object determination, and object centroid scheme flow
chart.

percent, this location within the binned histogram is considered a peak. Once each peak

is determined, a value of interest is found as

P̄b =
1

32 n̄

n̄∑
i=1

Pb(i) (4.12)

where Pb is the value at which a peak occurs in the binned histogram, n̄ is the number of

peaks, and P̄b is the average of the peak locations. This value ranges from 0 to 1, hence

the division by the binned size value. If, however, n̄ = 0, P̄b can be estimated using a

variable which will be discussed later.

The overall average of the NGSI is computed as

P̄ =
1

m n

n∑
j=1

m∑
i=1

Wn(i, j) (4.13)

where P̄ is the average value of the image array, and Wn is the filtered NGSI. By using

P̄ , an upper threshold estimate can be obtained as
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P̄c =
P̄+1

2
(4.14)

where P̄c can be used to estimate a peak location value, P̄b, when n̄ = 0. The peak value

can be found as

P̄b =
P̄c
2

(4.15)

Another value needed, is the average row standard deviation of the NGSI, σr. This

should not be confused with the total standard deviation of the NGSI. The average row

standard deviation is found by

σr =
1

n

n∑
i=1

√√√√ 1

m

m∑
j=1

(
Wn(i, j)−P̄

)2
(4.16)

As it may be noticed, when calculating the row standard deviation, the biased formu-

lation is used instead of implementing the Bessel correction, n−1. Using Po and the

variables from Equations 4.12 to 4.16, a threshold, PF can be determined for locating

image objects of interest. Figure 4.5 shows the logic for determining a final threshold.

A second level threshold is calculated for use within the algorithm. This is found by

P2 =
Po+PF

2
(4.17)

By using filtering logic and steps depicted in the flow chart of Figure 4.6, the noise

elimination, object detection, and centroid locations can be found. An illustration of

object detection and centroid using Otsu’s method as well as the thresholding described

here can be found in Figures 4.7 and 4.8. In these images, zero mean random Gaussian

noise, with differing standard deviations is implemented. The brighter objects in the

scene are objects of interest, since this is mostly likely to be the situation in space. As

it can be seen in Figure 4.7, Otsu’s Method fails to have a threshold which properly

separates the bright objects from the rest of the image. The thresholding algorithm
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Figure 4.7: Otsu’s method of threshold being used for various degrees of random Gaussian
noise. Left image specifies noise addition, middle is detected objects centroids in the
noisy image, right depicts targeted locations on original image. Noise was added using
the “imnoise” function of Matlab. Original image courtesy of Angelina Litvin on https:

//stocksnap.io/photo/U4JKNI8126.

https://stocksnap.io/photo/U4JKNI8126
https://stocksnap.io/photo/U4JKNI8126
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Figure 4.8: Otsu’s method of threshold being used for various degrees of random Gaussian
noise. Left image specifies noise addition, middle is detected objects centroids in the
noisy image, right depicts targeted locations on original image. Noise was added using
the “imnoise” function of Matlab. Original image courtesy of Angelina Litvin on https:

//stocksnap.io/photo/U4JKNI8126.

https://stocksnap.io/photo/U4JKNI8126
https://stocksnap.io/photo/U4JKNI8126
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presented here is not guaranteed to detect all bright objects, but may also include ran-

dom areas of higher valued pixel clusters. A pixel area comparison would be needed to

establish if the object detected is a product of the noise or the actual object of interest.

The case shown in Figure 4.8 does however, detect the three bright lights of interest. In

addition, implementation of the Local Area Signal-to-Noise Ratio (LASNR) algorithm

given in [87] could help to further confirm exact objects of interest and object segmen-

tation. However, the LASNR has not demonstrated its full capabilities when the image

is diluted by substantial quantities of noise.

4.4 Simulations and Results

Simulations were ran using the same scenario as presented in [34], except for incorpo-

rating multiple impactors. Both infrared sensor cases and visible band sensor cases are

presented. During the simulations, it was found that taking pure camera data resulted

in control acceleration jitter. Jitter was due to the impact locations differing for each

sample, which at greater distances from the asteroid, affects the amount of change the

LOS vector undergoes. To remedy this situation, a five sample averaging filter was imple-

mented on the calculated impact locations. The calculated LOS no longer had the sharp

changes due to the changing of pixels once this filter was incorporated. However, this

does cause a delay when large changes are present. An example of the commanded con-

trol acceleration components for an unfiltered sequence of images can be seen in Figure

4.9, which is in reference to one of the kinetic-energy impactors.

4.4.1 Noiseless Image for MKIV

The MKIV concept, using a noiseless image, implements a five impactor system. This

consists of four KEI’s and the CV, which contains the target sensing device and will be

used as the main/fifth impactor. All of the four kinetic-energy impactors target locations



www.manaraa.com

74

Figure 4.9: Control accelerations and mission variables with regards to one of the KEI’s
using unfiltered camera information.
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Figure 4.10: Predicted impact locations using an infrared sensing device.

Figure 4.11: Predicted impact locations using a visible band sensing device.
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Figure 4.12: Predicted impact locations (left) and actual impact locations (right) using
a visible band sensing device.

Figure 4.13: Predicted impact locations (left) and actual impact locations (right) using
an infrared sensing device.
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Figure 4.14: Control accelerations and mission variables of the KEI using filtered camera
information.
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Figure 4.15: Simulated infrared image at approximately 2 hours from impact with a
signal-to-noise ratio of approximately 22.

are distributed on the body. In addition, the CV spacecraft targets the COF or COB.

Figure 4.10 and Figure 4.11 show the predicted impact locations on a scaled model (100

m) of 216 Kleopatra corresponding to a simulated infrared image and a simulated visual

image.

As it can be seen in Figures 4.10 and 4.11, the impact locations on the infrared image

are distributed over the entire target body, while the impact locations on the visual

image are limited by the illumination of the asteroid’s surface. Actual impact locations

and a comparison with the targeted locations can be seen in Figure 4.12 and Figure

4.13. As the figures show, the impact locations on the body failed to impact precisely

where targeted. This is due to the thrusters no longer being active when the KEIs are

60 seconds before impact. By doing so, it causes a targeting jitter while maintaining

marginal accuracy in impact location.

All KEIs perform terminal guidance thrusting maneuvers. For ease, solely the first

KEI will be shown. This is due to a comparison with the first body of the unfiltered

case. An illustration of the mission components can be seen in Figure 4.14. As shown

in this figure, the KEI does not have an uncontrollable amount of system jitter. This
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Figure 4.16: CV control accelerations and mission variables using filtered camera infor-
mation.
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Figure 4.17: KEI-4 control accelerations and mission variables using filtered camera
information.
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Figure 4.18: Object blob detection and targeted impact locations.

can be compared with the identical KEI using unfiltered camera information, which is

depicted in Figure 4.9.

4.4.2 Noisy Image for MKIV

A similar mission scenario is conducted, where the KEI has thruster firings until 30

seconds before the final impact, using a simulated infrared camera with the addition

of camera noise. A simulated image at 2 hours before asteroid intercept can be seen

in Figure 4.15. At this point, the asteroid on the image array has a signal-to-noise

ratio of approximately 22. Digital image processing schemes are used to eliminate the

noise caused by the asteroid and detector. Object blob detection and noise elimination

is completed by the threshold method described in Section 4.3.1 following the flow in

Figures 4.5 and 4.6.

Due to this threshold technique, the impact locations may vary slightly. The actual

target location, commanded accelerations, and other mission points of interest are shown

in Figure 4.16. It can be seen that the information for the impact location is not constant,

but has undergone an averaging filter. Using an averaging filter results in the guidance
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Figure 4.19: CV and KEI’s impact location on a scaled 216 Kleopatra (100 m diameter).

scheme not reacting to sharp changes in the LOS rate value due to pixel location changes.

By doing so, however, the averaging filter creates a dampened response, which may cause

the intercepting spacecraft to miss the target. If this situation were simulated, a weighted

averaging smoothing scheme could be used. The depiction of one of the KEI’s can be

seen in Figure 4.17, which shows similar time histories to that of the CV. This KEI uses

a weighted average due to needing to shift impact location when the asteroid begins to

be resolved. A delay in the actual impact location could cause a failure in intercepting

the target.

After the image undergoes thresholding, the targeted locations for the detected blob

object are found by using the same method for a noiseless system. The targeted impact

locations for the CV and KEI’s are shown in Figure 4.18. It can be seen that this image

is binary; either white or black. The white indicates the object. These impact locations

are very similar to the locations found by the noiseless system since the blob detected
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is of similar shape to that of the actual asteroid. Information shown in Figures 4.16 to

4.18, along with other KEI’s information, result in asteroid intercept. Asteroid intercept

locations can be seen in Figure 4.19, where the colored pluses indicated a KEI or the

CV. All interceptors impact the small, 100 meter asteroid. Not all KEIs intercept at

the targeted locations, which is due to the average filter, triggering scheme, and image

resolution at the time of thrusters turning off.

4.5 Future Work

While impacting one target using multiple KEIs is a starting point of our research,

future work will involve the incorporations of targeting and impacting multiple targets

using a single or multiple camera system implemented on each KEI. The proposed scheme

would include the use of object recognition for multiple images. Since this scheme uses

blob detection, Hu’s moments could be used to determine common objects in multiple

images. Other directions include star inclusion, star illumination, background saturation,

and background estimation as well as subtraction, all of which have been explored by

other researchers in the past.

4.6 Conclusion

This chapter has described a new non-nuclear MKIV (Multiple Kinetic-energy Im-

pactor Vehicle) system that can fragment or pulverize small asteroids (< 150 m) detected

with short mission lead times (< 10 years). A brief description of the image segmen-

tation, image thresholding, and impact-location predictions on the target using image

processing on a mono-camera system has been presented. It was assumed that terminal

guidance and control commands can be generated from the main carrier vehicle for all

other KEIs. It has also been shown, through simulations, that the MKIV system can
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successfully intercept a target asteroid that is as small as 100 meters in diameter using

visual camera data.
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CHAPTER 5. ORBITAL CHARACTERIZATION OF A

BINARY-ASTEROID TARGET

5.1 Introduction

This chapter investigates the Minimum Orbit Intersection Distance (MOID) estima-

tion and the Full-Two-Body Problem (F2BP) formulation, which play a key role for a

rendezvous mission to an asteroid. The MOID value determines, not including position

as a function of time, what the minimum distance between two objects of interest is.

In this case, one object of interest is the Earth. Computing this value helps to give an

impact risk estimation of objects that come close to Earth’s orbit. The other topic, the

F2BP, explores the mutual gravitational and mutual torques experienced between two

bodies. This is particularly helpful when conducting simulation around complex binary

geometries such as the Didymos system. If necessary, the formulation can be extended to

multiple bodies, which could include the orbiting dynamics of a spacecraft. The research

objective herein is to estimate the fuel required to maintain a stable orbit in complex

gravity fields, while observing both the self-orbiting bodies.

5.2 Minimum Orbit Intersection Distance (MOID)

Computation

Minimum Orbit Intersection Distances (MOIDs) for objects are used to help evalu-

ate the potential of an asteroid collision event [88]. Sitarski [19] found a method that
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estimates the MOID for any two given orbits. This method was developed the 1960’s,

and has been considered, sometimes modified, and occasionally used during the past few

decades [89, 90, 91].

5.2.1 MOID Problem Formulation and Solution

The research work herein will follow the formulation for the MOID computation

described in [19]. First, two objects of interest must be selected. In general, any object’s

orbit can be compared with another as long as both orbits are given in the same reference

frame. Here, the positions of both objects, given in the same heliocentric coordinate

system, are described as

R1 =


x1

y1

z1

 and R2 =


x2

y2

z2

 (5.1)

These vectors can also be represented by a coordinate transformation in the form of

R1 = H1 U1, R2 = H2 U2 (5.2)

where

U1 =


R1 cos(ν1)

R1 sin(ν1)

0

 , U2 =


R2 cos(ν2)

R2 sin(ν2)

0

 ,

R1 =
p1

1+e1 cos(ν1)
and R2 =

p2

1+e2 cos(ν2)

and

H1 =


1 0 0

0 cos(i1) −sin(i1)

0 sin(i1) cos(i1)




cos(ω1) −sin(ω1) 0

sin(ω1) cos(ω1) 0

0 0 1





www.manaraa.com

87

H2 =


cos(Ω2−Ω1) −sin(Ω2−Ω1) 0

sin(Ω2−Ω1) cos(Ω2−Ω1) 0

0 0 1




1 0 0

0 cos(i2) −sin(i2)

0 sin(i2) cos(i2)




cos(ω2) −sin(ω2) 0

sin(ω2) cos(ω2) 0

0 0 1


where p = q (1+e), q is the corresponding orbit’s perihelion distance, e is the orbit’s

eccentricity, p = a (1−e2) (when e < 1), and a is the orbit’s semi-major axis. For each

equation, the subscripts indicate the orbit parameters that belong to the corresponding

orbit, 1 is orbit one and 2 is orbit two. The orbital elements are: a is the semi-major axis,

e is the eccentricity, Ω is the longitude of ascending node, i is the inclination, ν is the

true anomaly, and ω is the argument of periapsis. From here, the objective is to minimize

the distance between the two orbits or by minimizing the square of the distance. This

function is then given by

f(ν1, ν2) =
1

2
‖H1 U1−H2 U2‖2 (5.3)

The minimum values for the function can be found by differentiating Equation 5.3.

After completing the differentiation, further detail can be found in [19] Equation 4 to 8,

derivatives with respect to each orbit’s ν are

∂f

∂ν1

=
R1

p1

[e1R1Y1+Y1(KX2+MY2)−(e1R1+X1)(LX2+NY2)] (5.4a)

∂f

∂ν2

=
R2

p2

[e2R2Y2+Y2(KX1+LY1)−(e2R2+X2)(MX1+NY1)] (5.4b)

where

X1 = R1 cos(ν1), X2 = R2 cos(ν2)

Y1 = R1 sin(ν1), Y2 = R2 sin(ν2)

and

K =
3∑
i=1

H1(i, 1) H2(i, 1)
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L =
3∑
i=1

H1(i, 2) H2(i, 1)

M =
3∑
i=1

H1(i, 1) H2(i, 2)

N =
3∑
i=1

H1(i, 2) H2(i, 2)

where i indicates the row access, while the second number in the matrix parentheses

access the matrix’s column. However, Equations 5.4 have conditions that will result in

the existence of an minimum of Equation 5.3. These conditions are given by

∂f

∂ν1

= 0,
∂f

∂ν2

= 0

and

∂2f

∂ν2
1

∂2f

∂ν2
2

−
(

∂2f

∂ν1∂ν2

)2

> 0, and
∂2f

∂ν2
1

> 0

where

∂2f

∂ν2
1

=
R1

p1

[
2e1R1Y1

∂f

∂ν1

+e1R1
R1

p1

(e1R1+X1)+X1(KX2+MY2)+Y1(LX2+NY2)

]

∂2f

∂ν2
2

=
R2

p2

[
2e2R2Y2

∂f

∂ν2

+e2R2
R2

p2

(e2R2+X2)+X2(KX1+LY1)+Y2(MX1+NY1)

]

∂2f

∂ν1∂ν2

=
R1

p1

R2

p2

[(e2R2+X2)[N(e1R1+X1)−MY1]−Y2[L(e1R1+X1)−KY1]]

Implementing these conditions into Equations 5.4a and 5.4b result in two trigono-

metric forms that are functions of ν1 and ν2, which are

e1R1Y1+Y1(KX2+MY2)−(e1R1+X1)(LX2+NY2) = 0 (5.7a)
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e2R2Y2+Y2(KX1+LY1)−(e2R2+X2)(MX1+NY1) = 0 (5.7b)

Equations 5.7a and 5.7b can be solved numerically. However, we consider rewriting

Equation 5.7a as

s+t sin(ν2)+w cos(ν2) = 0 (5.8)

where

s =
e1R1Y1

p2

, t = MY1−N(e1R1+X1), and w = e2s+KY1−L(e1R1+X1) (5.9)

By making these variable definitions, we obtain the solutions to Equation 5.8 as

1) sin(ν2) =
−t s+w

√
l

m
cos(ν2) =

−w s−t
√
l

m
(5.10a)

2) sin(ν2) =
−t s−w

√
l

m
cos(ν2) =

−w s+t
√
l

m
(5.10b)

where m = t2+w2 and l = m−s2. The variable ν1 can only ever vary from 0 to 2pi,

if the eccentricity of the orbit is less than or equal one. If e1 is greater than one, ν1

varies from −cos−1(−1/e1) to cos−1(−1/e1). Since these bounds for ν1 are established,

an iterative solution can be determined.

This method is done by varying ν1 from the lower bound to the upper bound. At

each iteration, the value of l must greater than 0 to evaluate the solutions of Equations

5.10a and 5.10b, ν2. Remember, X1 and Y1 must be evaluated at each step. After this

is completed, evaluate X2, Y2 and Equation 5.7b using the solution of Equation 5.10a.

Be sure to save the value of 5.7b at the current and previous iterations, which will be

denoted as Qi and Qi−1. The goal is to find the points where Equation 5.7b switches

sign, the zero crossing. With this current and previous evaluation memory, the values of



www.manaraa.com

90

ν1 must also be stored in a similar manner, which will be given by ν1i and ν1i−1
. Once a

zero crossing point is found, a new ν1, ν1N , can be evaluated as

ν1N = (1−z) ν1i+z ν1i−1
(5.11)

where z is given by

z =

∣∣∣∣ Qi

Qi−Qi−1

∣∣∣∣ (5.12)

A new X1 and Y1 are then evaluated using the new estimated ν1 at zero crossing of

Equation 5.7b. Use these values to solve for the corresponding ν2 value using Regular

False method, which solves for the zero of Equation 5.7b. The inputs for the method

are the new X1, Y1, p2, e2, K, L, M , N , the two values of ν2 that were found to have a

zero crossing of Equation 5.7b (these values serve as the beginning bounds) and an exit

tolerance. A solution is then found. Recalculate the new X2 and Y2. Then perform the

evaluation of Equation 5.3 to find a value, and store this value. However, Equation 5.3

must be multiplied by two and taken to the power of one-half. This is given by

distance = ‖H1U1−H2U2‖2 (5.13)

Repeat the afore mentioned process for the solution of Equation 5.10b. At the end,

find the minimum values from both the solutions of 5.10. A recommendation is to not

store the values from Equation 5.3, but to check if the new value calculated is less than

the current and re-save the minimum value. A list of steps can be seen in the list below.

1. Evaluate H1 and H2.

2. Evaluate K, L, N , and M .

3. Start ν1 step through. 2000 steps from beginning to end will suffice. If e2 > .95,

then 50000 steps should be used.
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Figure 5.1: 13954 object histogram of absolute MOID difference compared to SBDB.

4. Calculate X1 and Y1 at ν1, s, t, w, m, and l.

5. Check to see if l > 0. If it is, continue with the calculations.

6. Calculate ν2 from Equation 5.10a and store value.

7. Calculate X2 and Y2 at ν2.

8. Evaluate Equation 5.7b and store value.

9. Step forward and check to see if Equation 5.7b changes signs. If it does continue.

10. Calculate ν1N , X1, and Y1.

11. Use Regula Falsi to solve Equation 5.7b using the current and previous value of ν2

and obtain the zero solution of Equation 5.7b, ν2.

12. Evaluate new X2 and Y2.

13. Solve for the distance given by Equation 5.13.

14. Do steps 6 through 12 for ν2 from Equation 5.10b.
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15. Find minimum distance value.

If large databases of objects need to perform MOID calculations, this process can be

parallelized. Currently, this method is parallelized using MATLAB’s “parfor” structure.

5.2.2 Results and Comparison

Results, when using Earth as the main orbit, are compared with the MOID values

given by the Small Bodies Database (SBDB) and single orbit evaluation of Gronchi’s

method [89]. Parameters for Earth can be found in Table 5.1 A FORTRAN code of

Gronchi’s method can be found at [92]. First 13954 Near Earth Asteroids (NEA’s) were

gathered from the SBDB. A histogram of the absolute differences between the MOID’s

from the SBDB and the method provided here are given in Figure 5.1. The statistics

are as follows: µ = 3.4658e-4, σ = 3.2257e-4, min = 3.3248e-9, and max = 1.9786e-3.

These agree to at least the max difference, ≈ 2e−3.

A second test was ran using 702746 asteroids. Yet again, a comparison was done

with the SBDB. However, as it can be seen in Figure 5.2, the MOID values do not match

well for some objects. The statistics corresponding to the values given for the absolute

differences are given as follows: µ = 6.4802e-4, σ = 4.5805e-3, min = N/A, and max =

1.9766. These agree to at least the max difference, ≈ 1.9766. The minimum was not

recorded due to a population of asteroids in the SBDB failing to have a MOID evaluation.

As it may be seen, there are a few asteroids that may appear to be outliers. Four

asteroids, corresponding to the top four maximum absolute error, are examined. Table

5.2 presents the results for four outlying absolute error objects and MOID comparison.

Gronchi’s method shows that the minimum values found by SBDB are actually saddle

points or other local minimum. MOID’s from within this section and the Gronchi method

match with the grid search method. Distance plots generated by the grid search method

for the four asteroids given can be seen in Figures 5.3 through 5.6. The Points on each

plot correspond to values for the top four large absolute errors in Table 5.2.
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Table 5.1: Earth parameter values

Earth
Variable Symbol Variable Value
a 1.000368806233832 (AU)
e 1.705811321949892E-02
i 2.180444240341850E-03 (deg)
Ω 212.0592104472283 (deg)
ω 249.8152155810121 (deg)

Table 5.2: MOID comparison table

Grid Search Absolute Errors
Object SBDB Section Gronchi (10000x10000) SBDB Against
Name MOID Method MOID MOID MOID Section Method
2014 MH55 5.42006 3.44344353398923 3.443443535683821 3.44344358030805 1.97661646601077
2014 TZ33 10.3241 8.45752160875998 8.457521609644864 8.45752165382934 1.86657839124002
2009 FW23 2.1147 0.839425529712386 0.839425523928287 0.839425607433946 1.27527447028761
2005 SB223 2.97832 2.3086025157969 2.308602501239387 2.30860264132135 0.669717484203098

Figure 5.2: 702746 object zoomed histogram of absolute MOID difference compared to
SBDB.

Table 5.3: 433 Eros MOID comparison table (out to 15 decimal places, besides SBDB)

Grid Search
Object SBDB Paper’s Gronchi’s (50000x50000)
Name MOID MOID MOID MOID

433 Eros 0.148887 0.148721656899931 0.148721656899935 0.148721657144012
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Figure 5.3: Object 2014 MH55 and its distance contour.

Figure 5.4: Object 2014 TZ33 and its distance contour.
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Figure 5.5: Object 2009 FW23 and its distance contour.

Figure 5.6: Object 2005 SB223 and its distance contour.
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Since there are discrepancies between SBDB and the method herein as well as Gronchi,

MOID re-evaluation of the 13954 NEA population is conducted. However, for simplicity,

a model comparison is done for a single asteroid. This asteroid is 433 Eros. Values

corresponding to the compared methods are given in Table 5.3. As it can be seen, the

MOID within the SBDB does not match the grid search method out past 4 significant

digits, which was the error found between the method in this section and the SBDB.

In contrast, the method presented herein, with the ν1N update, shows to agree with

Gronchi’s method out to 14 decimal places for this scenario. These values both agree

with the grid search method out to 8 decimal places.

5.2.3 Conclusion

This section has gathered and put forth a flow chart for evaluating the MOID for

any given two objects of interest. Moreover, an improvement for finding the minimum

crossing angle was presented. In addition, each method was evaluated against the grid

search method, and the method presented herein was accurate out to at least six decimal

places (initial limit of Gronchi’s output) when comparing against the grid search method

in some scenarios. When expanding the readable output to 15 decimal place, and when

considering 433 Eros, the method in this section agrees with Gronchi out to 14 decimal

places. Both methods have an agreement to 8 decimal places comparing to the grid

search method.

5.3 Full-2-Body Problem (F2BP) Using Polyhedron Objects

5.3.1 Introduction

The Full rigid two-Body Problem (F2BP) as been studied for the case of binary

asteroid systems, which include asteroid (66391) 1999 KW4. It has been shown, by using

the mutual potential and a discrete equation of motion formulation, that the dynamics of



www.manaraa.com

97

both bodies can be accurately represented [93, 94]. The discrete integrator used was the

Lea Group Variational Integrator (LGVI), which preserves desirable system properties.

However, [93] and [94] used the form in [95], which did not incorporate the use of an

arbitrary body as was demonstrated by [96]. More computationally intensive schemes,

which implement Polyhedron shape models and partial derivatives of mutual potential,

were used to determine the mutual forces and mutual torques [97, 21]. In [93] and

[94], as well as [97] and [21], the relative motion of the bodies was propagated. For re-

constructive purposes, one of the bodies required propagation in the initial frame. Using

the relative motion equations was advised by [21] due to “reduced-size state vector for

relative EOM compared to inertial EOM.”

The implementation presented in this section follows the formulation for inertial forces

and moments acting on each body, which was discussed in [21]. However, a slightly

different approach is investigated for calculating specific tensors. These rank 4 tensors

are found by directly differentiating the polyhedron vertex matrix by their respective

orientation matrix transpose (global to body frame). The two bodies are propagated

in time using the discrete LGVI while having a 40 second time step. In addition, the

simulation can be conducted with any arbitrary shaped asteroid as long as the file uses

triangular faces. Moreover, non-convex but closed shapes may be used, which differs

from [21] where solely convex shapes may be considered.

5.3.2 Full-Two-Body Problem Formulation

The Full-Two-Body Problem (F2BP) consists of mutual gravitation as well as mutual

torque of each body. This is very useful if either body is irregularly shaped. Such a case

can be seen in binary asteroid situations, such as 65803 Didymos and the binary asteroid

1999 KW 4 [98, 99]. An effective way to estimate the dynamics of such systems is to

implement the mutual potential equation. From that equation, the force on each object
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Figure 5.7: Cutout of object A showing how the surface is made up of triangular faces
and how simplexes are constructed using vectors to the triangle’s vertexes. Each body
will have similar definition.

as well as the bodies’ torques can be calculated. The following subsections follow the

formulation in [100], which can be refereed to for further details and explanations.

5.3.2.1 Mutual Potential and Its Expansion

As given in [100] the mutual potential, in integral form, over both of the bodies’

volumes is

U =

∫∫∫
VA

∫∫∫
VB

1

r
dVB dVA (5.14)

where r is the distance between each differential volume of the two bodies. Each body

is made up of triangular faces, which results in body tetrahedrons or simplexes for each

face. One of the vertexes of each tetrahedron lies at the centroid of the body, which

corresponds to the center of mass. With this formulation, the potential equation can be



www.manaraa.com

99

Figure 5.8: Polyhedron depiction and variable display on two polyhedron bodies.

rewritten as the summation over each simplex volume, va and vb. This expression is as

follows

U =
∑
vaεVA

∑
vbεVB

∫∫∫
va

∫∫∫
vb

1

r
dvb dva (5.15)

An illustration of the triangle faces and how a simplex would form can be seen in Figure

5.7. The variable r can be expressed in vector notation. A depiction of the two-body

scenario can be seen in Figure 5.8, which shows specific variables and hence, their defi-

nitions. With the visual vector definitions in the Figure, the following equation holds

r = b−a = (B−A)+(∆b−∆a) (5.16)

This can be further condensed by defining two new variables, R and h, which are given

by
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R = B−A

h = ∆b−∆a

Equation 5.16 can then be rewritten as

r = R+h (5.17)

From Equation 5.17, the distance between each differential volume, r can be found by

the Euclidean norm of r, which is

r =
√

(R+h)·(R+h)

=
√

R·R+2R·h+h·h

=
√
R2+h2+2R·h (5.18)

where R and h are the Euclidean norms of R and h. Therefore, 1/r can be expressed

simply as the reciprocal of Equation 5.18

1

r
=
(
R2+h2+2R·h

)−1/2
(5.19)

5.3.2.2 Expansion of 1/r

Using Legendre polynomials to expand a portion of the gravity potential is commonly

used when estimating the spherical harmonics of a source [101]. Here, a similar formula-

tion is conducted for 1/r. By factoring 1/R2 from Equation 5.19 and slight manipulation,

we obtain the following:

1

r
=

1

R

[
1+

(
h

R

)2

+2

(
h

R

)(
R·h
R h

)]−1/2

(5.20)
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Figure 5.9: Legendre Polynomials up to the 8th degree.

By incorporating a summation, this expression can then be rewritten using Legendre

polynomial form

1

r
=

1

R

∞∑
n=0

(
h

R

)n
Pn

(
−R·h
Rh

)
(5.21)

where Pn is the nth degree Legendre polynomial. A depiction of the polynomials up

to the 8th degree can be seen in Figure 5.9. Otherwise, general form for the Legendre

polynomial of order n is

Pn(x) =
1

2n

n∑
k=0

n
k


2

(x−1)n−k(x+1)k

Pn(x) =
1

2n

n∑
k=0

(
n!

(n−k)! k!

)2

(x−1)n−k(x+1)k (5.22)
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5.3.2.3 Change of Variables and Other Expressions

Since the expansion of 1/r is completed, transforming the integral to barycenter

location simplifies the preparation of integration. Using this transformation, there must

be an introduction to the Jacobian determinant, which can be computed as

Ta = det ([∆ra1 ,∆ra2 ,∆ra3 ]) (5.23)

where ∆ra1 , ∆ra2 , and ∆ra3 are the column vectors corresponding to the each triangular

face vertex location of body A, measured from the center of mass. Similarly, the deter-

minant corresponding to body B is given as Tb, but must be calculated with respect to

body B’s triangular faces. The gravitational mutual potential can then be written as

U = G
∑
vaεVA

∑
vbεVB

ρaTaρbTb

∫∫∫
a′

∫∫∫
b′

1

r
db′ da′ (5.24)

where a′ and b′ are the ’standard’ simplexes of each body A and B corresponding to a

transformed va and vb, ρa is the density of va, ρb is the density of vb, and G is the grav-

itational constant. Further expressions for integration are required. These expressions

will have any combination of h or h. For convenience, the equations hereafter will be

expressed in Einstein notation. A stacked matrix that contains elements of each bodies’

triangular vertex locations in the inertial frame is constructed as

vij ≡


∆xa1 , ∆xa2 , ∆xa3 , −∆xb1 , −∆xb2 , −∆xb3

∆ya1 , ∆ya2 , ∆ya3 , −∆yb1 , −∆yb2 , −∆yb3

∆za1 , ∆za2 , ∆za3 , −∆zb1 , −∆zb2 , −∆zb3


= [∆ra1 ,∆ra2 ,∆ra3 ,−∆rb1 ,−∆rb2 ,−∆rb3 ]

(5.25)
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where ∆x, ∆y, and ∆z are the x, y, and z coordinates of the triangular face vertexes

with respect to each bodies’ centroid location but given in inertial coordinates. A kernel

variable is then defined as

qi ≡ [ma, na, oa,mb, nb, ob] (5.26)

where m, n, and o are the barycenter variables used for the transformation. With these

definitions, h, R·h, and h2 can be rewritten as

hj = qiv
i
j (5.27)

R·h = qiw
i (5.28)

where wi ≡ Rjvij.

h2 = qijr
ij (5.29)

where rij is a 6×6 rank-2 tensor given by

rij = vikv
j
k (5.30)

For simplicity and generalization for the outer product of the kernel q, a rank-k integrand

can be written as

qi1i2...ik = qi1qi2 ....qik

5.3.2.4 Integration for Mutual Potential

When substituting tetrahedron variables into the transformed mutual potential, Equa-

tion 5.24, it can be noticed that they are not independent of the integration. This forms

different rank integrands of q. Since the transformation is conducted, the elements for
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any rank of q can be written as a sum collection of exponents in each integrand socket,

which is then denoted as q̄. For example, the rank-1 integrand is

q̄i =

[
(100|000) (010|000) (001|000) (000|100) (000|010) (000|001)

]
The rank-2 integrand is then given by

q̄ij =



(200|000) (110|000) (101|000) (100|100) (100|010) (100|001)

(110|000) (020|000) (011|000) (010|100) (010|010) (010|001)

(101|000) (011|000) (002|000) (001|100) (001|010) (001|001)

(100|100) (010|100) (001|100) (000|200) (000|110) (000|101)

(100|010) (010|010) (001|010) (000|110) (000|020) (000|011)

(100|001) (010|001) (001|001) (000|101) (000|011) (000|002)


The vertical line separating the collection of 3 exponents denotes the independence of

the variable sets associated for each body during the iterated volume integrals. This

volume integral, due to the change of variables, can then be written as

∫ 1

0

∫ 1−m

0

∫ 1−m−n

0

mInJoKdo dm dn =
I! J ! K!

(I+J+K+3)!
(5.31)

where I, J , and K are the values of the collection in each matrix element. The double

volume integral result is then written as

Qi1....ik =

∫∫∫
01

∫∫∫
01

qi1....ikdb
′da′ (5.32)

The values for Qi, using the matrix element collection from q̄i and evaluating them

with Equation 5.31, are

Qi =
1

144

[
1 1 1 1 1 1

]
Each collection result per matrix element must be multiplied by the result of the collection

on the other side of the horizontal bar. For example, Q1 = 1! 0! 0!
(1+0+0+3)!

0! 0! 0!
(0+0+0+3)!

= 1
144

.

Another example can be seen with evaluating Qij
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Figure 5.10: Rank-0 to Rank-4 Q matrix. The variable “slide” is a 1×6 vector.

Qij =
1

2880



8 4 4 5 5 5

4 8 4 5 5 5

4 4 8 5 5 5

5 5 5 8 4 4

5 5 5 4 8 4

5 5 5 4 4 8


Another evaluation example for the first element of Qij is: Q11 = 2! 0! 0!

(2+0+0+3)!
0! 0! 0!

(0+0+0+3)!
=

2
720

= 8
2880

. Example FORTRAN code for generating rank-0 to rank-4 tensors can be seen

in Figure 5.10. Moreover, the “eval” and “fac” functions within the FORTRAN code

can be found in Figure 5.11. From these figures, it can be seen that any rank tensor,

Qi1....ik , can be generated by including another loop as well as another line for the “slide”

variable. This current implementation will fail when exploring higher rank
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Figure 5.11: Evaluation function corresponding to Equation 5.31 and used in Figure
5.10.

tensors (>15) due to compiler limitations. With everything able to be determined, the

mutual potential, out to the 3rd degree, is then

U = G
∑
vaεVA

∑
vbεVB

ρaTaρbTb

∫∫∫
a′

∫∫∫
b′

1

r
db′ da′

= G
∑
aεA

∑
bεB

ρaTaρbTb

([
Q

R

]
+

[
−Qiw

i

R3

]
+

[
−Qijr

ij

2R3
+

3Qijw
iwj

2R5

]
+

[
3Qijkr

ijwk

2R5
−5Qijkw

iwjwk

2R7

]
+.......

) (5.33)

Further details can be found in [100]. For convenience, the terms shown will be written

as: U0, U1, U2, and U3. Note, there are further terms that can be expanded to. The

redefined terms are as follows
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U0 =
Q

R

U1 = −Qiw
i

R3

U2 = −Qijr
ij

2R3
+

3Qijw
iwj

2R5

U3 =
3Qijkr

ijwk

2R5
−5Qijkw

iwjwk

2R7

Through this formulation, it seems that, if there was to be a cavity within the polyhedron

or a non-convex shape, the model would still assume the cavity or empty space to have

a density. This would cause for a “double count” of mass from that location and would

result in faulty gravitation and torque from and on one or both bodies.

5.3.2.5 Mutual Force, Mutual Torque, and Perturbations

Since the mutual potential using tetrahedrons is defined, formulating the equations

for mutual forces and torques must be completed. This is done by differentiating the

mutual potential, Equation 5.33, by the relative position and separately by each bodies’

orientation transformation matrix. Doing so will result in the mutual force and mutual

torque, respectively. The formulations below will be for the inertial reference frame and

are taken from [21].

5.3.2.5.1 Force Components By definition, a force can be determined by dif-

ferentiating the potential by its position. This can be seen in simple 2-body dynamics.

Here, however, these equations take a different form due to the Einstein notation. The

forces for bodies A and B can be found as follows

FA
θ =

∂U

∂Aθ

= −FB
θ = − ∂U

∂Bθ

(5.34)
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From inspecting Equation 5.33, it can be seen that there are a few useful simplifications

that can be made when differentiating. These take the form of

∂R

∂Aθ

=
∂
√

RjRj

∂Aθ

=
1

2
√

RjRj

∂ (RjRj)

∂Aθ

=
1

2R

(
∂Rj

∂Aθ

Rj+Rj ∂Rj

∂Aθ

)
=

1

2R

(
−2δjθRj

)
= −Rθ

R

(5.35)

∂wi

∂Aθ

=
∂
(
Rjvij

)
∂Aθ

=
∂Rj

∂Aθ

vij = −δjθv
i
j = −viθ (5.36)

where the Kronecker delta function, δjθ, is 1 when i = θ and 0 elsewhere. With these

simplifications, the components of Equation 5.33 can be differentiated with respect to

Aθ.

∂U0

∂Aθ

=
∂

∂Aθ

(
Q

R

)
= −Q

R2

∂R

∂Aθ

=
QRθ

R3
(5.37)

∂U1

∂Aθ

=
∂

∂Aθ

(
−Qiw

i

R3

)
=

3Qi

R4

∂R

∂Aθ

wi−Qi

R3

∂wi

∂Aθ

=
Qiv

i
θ

R3
−3QiRθw

i

R5
(5.38)

∂U2

∂Aθ

=
∂

∂Aθ

(
−Qijr

ij

2R3
+

3Qijw
iwj

2R5

)
=

3Qijr
ij

2R4

∂R

∂Aθ

−15Qijw
iwj

2R6

∂R

∂Aθ

+
3Qijw

j

2R5

∂wi

∂Aθ

+
3Qijw

i

2R5

∂wj

∂Aθ

=
15Qijw

iwjRθ

2R7
−3Qijr

ijRθ

2R5
−3Qijw

ivjθ
R5

(5.39)

∂U3

∂Aθ

=
∂

∂Aθ

(
3Qijkr

ijwk

2R5
−5Qijkw

iwjwk

2R7

)
= −15Qijkr

ijwk

2R6

∂R

∂Aθ

+
3Qijkr

ij

2R5

∂wk

∂Aθ

+
35Qijkw

iwjwk

2R8

∂R

∂Aθ

−5Qijkw
jwk

2R7

∂wi

∂Aθ

−5Qijkw
iwk

2R7

∂wj

∂Aθ

−5Qijkw
iwj

2R7

∂wk

∂Aθ

=
15Qijkr

ijwkRθ

2R7
+

15Qijkw
iwjvkθ

2R7
−3Qijkr

ijvkθ
2R5

−35Qijkw
iwjwkRθ

2R9

(5.40)
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The forces experienced by both bodies are then the summation of the partial deriva-

tives for the mutual potential, which is given by

FA
θ = −FB

θ = G
∑
aεA

∑
bεB

Ca,b ρaTaρbTb

(
∂U0

∂Aθ

+
∂U1

∂Aθ

+
∂U2

∂Aθ

+
∂U3

∂Aθ

+....

)
(5.41)

where Ca,b is

Ca,b =


sgn(n̂a·~ra)·sgn(n̂b·~rb), for (sgn(n̂a·~ra)+sgn(n̂b·~rb)) > −2

0, for (sgn(n̂a·~ra)+sgn(n̂b·~rb)) = −2

(5.42)

with n̂a and n̂b being each face’s outward pointing normal vector, and ~ra as well as ~rb

being the location of each face’s centroid. When both signs within the minimum function

are negative one, which represents to concave portions being calculated, the coefficient,

Ca,b, is zero. Such reason is due to the force components of the two inward pointing faced

tetrahedrons have already been considered by the other two combinations (min(-1,1) and

min(1,-1)) by the four face combinations. For example, consider two cross-sections of

hollow objects A and B as seen in Figure 5.12. For a set of inward and outward face

normal vectors on each body, fa(out), fa(in), fb(out), and fb(in) a face force combination

is as follows:
(
fa(out)fb(out)

)
,
(
fa(out), fb(in)

)
,
(
fa(in), fb(out)

)
as well as

(
fa(in), fb(in)

)
. The

first combination calculates the force as if both objects are solid; the second subtracts

out the force corresponding to the inward facing portion (hollow) of A to that of the

outward faces of B (solid); the second subtracts out force components corresponding to

the inward facing portion (hollow) of B to that of the outward faces of A (solid); and

the fourth combination gives the force of hollow portion of A on the hollow portion of B.

This last combination has no force component, since is no mass of A acting on no mass

of B. Each polyhedron face pair undergoes this process.

5.3.2.5.2 Torque Components Formulation of the torques caused on each body

can be seen from the straightforward implementation of moment equation, which states
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Figure 5.12: Example of a 2 dimensional continuous concave shape which shows a portion
represented by inward and outward pointing normal vectors corresponding to faces on
each body.

Moment = vector×Force. However, the orientation and transformation matrices must

be defined beforehand. Generally, the torques on each body given in the inertial frame

are

mA = PMA

and

mB = SMB

where P and S are the bodies’ rotational transformation matrix from body frame to

inertial frame for body A and body B. Furthermore, the transposes of these matrices are

defined by

P T = [αP , βPγP ]

and

ST = [αS, βSγS]

where α, β, and γ are column vectors creating the 3 × 3 transpose matrix. By applying

the definition of moments, the torque on each body from the other is given by the
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mutual potential partial differential form. This expression, which is formulated in [95],

is as follows

MA = −αP×
∂U

∂αP
−βP×

∂U

∂βP
−γP×

∂U

∂γP
(5.43)

and

MB = −αS×
∂U

∂αS
−βS×

∂U

∂βS
−γS×

∂U

∂γS
(5.44)

The partial derivatives are found by differentiating Equation 5.33 by transformation

matrix P T for body A and by ST for body B. However, some more simplifications can

be made when inspecting the mutual potential equation. Recall that for each face on

each body, vij is defined as

vij ≡


∆xa1 , ∆xa2 , ∆xa3 , −∆xb1 , −∆xb2 , −∆xb3

∆ya1 , ∆ya2 , ∆ya3 , −∆yb1 , −∆yb2 , −∆yb3

∆za1 , ∆za2 , ∆za3 , −∆zb1 , −∆zb2 , −∆zb3


= [∆ra1 ,∆ra2 ,∆ra3 ,−∆rb1 ,−∆rb2 ,−∆rb3 ]

which is given in Equation 5.25. Moreover, values within this equation are given in

inertial coordinates. Note, i ranges from 1 to 6, while j ranges from 1 to 3. This

expression can be rewritten in the form involving P and S as

vij = [P [∆ŕa1 ,∆ŕa2 ,∆ŕa3 ] , S [−∆ŕb1 ,−∆ŕb2 ,−∆ŕb3 ]] (5.45)

where ∆ŕa and ∆ŕb are each triangular face’s vertexes in the body frame with respect to

the center of mass of the corresponding object. For simplicity, a new matrix is defined,

cij. This matrix contains the non-transformed triangular face vertexes for each body, and

is written as

cij = [∆ŕa1 ,∆ŕa2 ,∆ŕa3 ,−∆ŕb1 ,−∆ŕb2 ,−∆ŕb3 ] (5.46)
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By differentiating Equation 5.45 with respect to P T , the result yields a rank-4 tensor,

which is given as

∂vij
∂P T

θφ

=
∂

∂P T
θφ

([P [∆ŕa1 ,∆ŕa2 ,∆ŕa3 ] , S [−∆ŕb1 ,−∆ŕb2 ,−∆ŕb3 ]])

=

[
∂Pjk
∂P T

θφ

cik, 0
θi
jφ

]
=
[
δθj δ

k
φc

i
k, 0

θi
jφ

]
=
[
δθjc

i
φ, 0

θi
jφ

]
= Dφi

jθ(a)

(5.47)

where the i index goes from 1 to 6 (accessing ith column of cij), 1 to 3 on the non-zero

portion and 4 to 6 on the zero portion, while all φ, θ, and j range from 1 to 3. This is

done similarly for body B

∂vij
∂STθφ

=
∂

∂STθφ
([P [∆ŕa1 ,∆ŕa2 ,∆ŕa3 ] , S [−∆ŕb1 ,−∆ŕb2 ,−∆ŕb3 ]])

=

[
0θijφ,

∂Sjk
∂STθφ

cik

]
=
[
0θijφ, δ

θ
j δ
k
φc

i
k

]
=
[
0θijφ, δ

θ
jc

i
φ

]
= Dφi

jθ(b)

(5.48)

where, in the case of ST differentiation, i ranges from 1 to 3 on the zero portion and 4

to 6 on the non-zero part. It has been noted by [21] that the assumption of the general

partial matrix differential form, ∂Tik
∂TTθφ

= δθkδ
i
φ, does not belong to SO{3}, however is still

suitable. Another option is to use a substitution that follows

∂T Tik
∂Tθφ

= δθi δ
k
φ−TφiTkθ (5.49)

where T is, in general, a 3×3 rotation transformation matrix. This corresponds to either

ST or P T when considering the differentiation. Doing so will result in a different form

of Equations 5.43 and 5.44 as

MA =
1

2

(
−αP×

∂U

∂αP
−βP×

∂U

∂βP
−γP×

∂U

∂γP

)
(5.50)

and

MB =
1

2

(
−αS×

∂U

∂αS
−βS×

∂U

∂βS
−γS×

∂U

∂γS

)
(5.51)
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Due to the formulation of D, the following moment equations can be done for either

body A or B by switching which D is used, Dφi
jθ(a) or Dφi

jθ(b). With this, two more

simplification can be made. These are with the partial differentiation of wi and rij with

respect to any general rotational transformation matrix Tφθ. The simplifications are

written as

∂wi

∂Tφθ
=
∂
(
Rjvij

)
∂Tφθ

= Rj
∂vij
∂Tφθ

= RjDφi
jθ (5.52)

and

∂rij

∂Tφθ
=
∂vip vjp
∂Tφθ

=
∂vip
∂Tφθ

vjp+vip
∂vjp
∂Tφθ

= Dφi
pθv

j
p+vipD

φj
pθ = 2vipD

φj
pθ (5.53)

For convenience, only the general form of D will be used. The following equations,

Equations 5.54 through 5.57, are found by differentiating the different components of

the mutual potential equation, Equation 5.33, by each body’s rotational matrix (inertial

to body frame). These partial differentiation forms are given by

∂U0

∂Tφθ
= 0φθ (5.54)

∂U1

∂Tφθ
=

∂

∂Tφθ

(
−Qiw

i

R3

)
= −Qi

R3

∂wi

∂Tφθ
= −

QiR
jDφi

jθ

R3
(5.55)

∂U2

∂Tφθ
=

∂

∂Tφθ

(
−Qijr

ij

2R3
+

3Qijw
iwj

2R5

)
= −Qij

2R3

∂rij

∂Tφθ
+

3Qij

2R5

∂wiwj

∂Tφθ

= −
Qijv

i
pD

φj
pθ

R3
+

3Qij

2R5

(
∂wi

∂Tφθ
wj+wi ∂wj

∂Tφθ

)
= −

Qijv
i
pD

φj
pθ

R3
+

3Qij

2R5

(
RpDφi

pθw
j+wiRpDφj

pθ

)
= −

Qijv
i
pD

φj
pθ

R3
+

3Qijw
iRpDφj

pθ

R5

(5.56)
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∂U3

∂Tφθ
=

∂

∂Tφθ

(
3Qijkr

ijwk

2R5
−5Qijkw

iwjwk

2R7

)
=

3Qijk

2R5

(
∂rij

∂Tφθ
wk+rij

∂wk

∂Tφθ

)
−5Qijk

2R7

(
∂wi

∂Tφθ
wjwk+wi ∂wj

∂Tφθ
wk+wiwj ∂wk

∂Tφθ

)
=

3Qijk

2R5

(
2vipD

φj
pθw

k+rijRpDφk
pθ

)
−5Qijk

2R7

(
RpDφi

pθw
jwk+wiRpDφj

pθw
k+wiwjRpDφk

pθ

)
=

3Qijk

2R5

(
2vipD

φj
pθw

k+rijRpDφk
pθ

)
−

15Qijkw
iwjRpDφk

pθ

2R7

(5.57)

Refer to [21] for further details about higher order expansion terms and sequencing of

different combinations. If this is not desired, Equation 5.33 can be expanded to further

terms using the Legendre polynomials of Figure 5.8. With the derivatives constructed,

the partial derivative matrix is written as the summation over both bodies

Eφθ = G
∑
aεA

∑
bεB

Ca,b ρaTaρbTb

(
∂U0

∂Tφθ
+
∂U1

∂Tφθ
+
∂U2

∂Tφθ
+
∂U3

∂Tφθ
+....

)
=
[
Eα Eβ Eγ

]
(5.58)

Each body will have a different summation for Eφθ due to the fourth order tensor, D.

Using the form of Equation 5.43 and 5.44, the torques in each body frame are given as

MA = −αP×Eα−βP×Eβ−γP×Eγ (5.59)

where Dφi
jθ(a) was used and

MB = −αS×Eα−βS×Eβ−γS×Eγ (5.60)

where Dφi
jθ(b) was used. However, in the case of using the definition for the matrix partial

differentiation as seen in Equation 5.49, the torques on each body can be written as

MA =
1

2

(
−αP×Eα−βP×Eβ−γP×Eγ

)
(5.61)
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MB =
1

2

(
−αS×Eα−βS×Eβ−γS×Eγ

)
(5.62)

where the correct D tensor is used corresponding to each body.

5.3.2.6 Solar Radiation Pressure

Solar radiation, from an illuminating source, causes an outward force opposing the

gravitational force caused by the source and orbiting body. This is due to photons

being emitted from the source outward to the body of question. These photons are

absorbed, reflected, and transmitted through the body. It has been shown in [102] that

a ”cannonball” representation, or LAGEOS model, of an orbiting body can be used.

However, when dealing with irregular shaped bodies, it would be wise to incorporate

such shapes into the solar radiation pressure force model. Since polyhedrons are being

used, each face can represent a surface and hence a formulation incorporating reflection,

absorption, and transmittance can be implemented.

5.3.2.6.1 Solar Radiation Pressure Force In [103] a formulation of solar ra-

diation pressure was found for using the faces of a polyhedron. This formula includes

the power density from the sun at the object, which is given in [104] as

W =
σR2

sT
4
s

||robj||2
(5.63)

where σ = 5.6704·10−8(W/m2/K4) is the Stefan-Boltzmann constant, Rs is the radius of

the sun, Ts is the surface temperature of the sun, and ||robj||2 is the distance from the

sun to the orbiting body. Note, this form is derived from the definition of existence and

a Lambertian source, which is found in [104] and Chapter 24 of [105]. The pressure can

then be described as

P (R) =
W

c
(5.64)
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where c is the speed of light and W is as defined in Equation 5.63. The force from solar

radiation is then given by

FSRP = −P (R)
n∑
k=1

Akcos (θk)
[
(1−sk) û+2

(ρk
3

+skcos (θk)
)

n̂k

]
(5.65)

where n is the number of faces illuminated by the sun, Ak is each triangular face’s area,

n̂k is the kth face’s outward pointing normal vector, û is the unit vector from the body to

the sun, θk is the angle between n̂k and û, sk is the body’s specular reflection coefficient,

and ρk is the body’s diffuse reflection coefficient. For simplicity, it is recommended that

the computations are calculated in the inertial frame. The last two variables, sk and ρk,

must follow

ak+sk+ρk = 1 (5.66)

where ak is the absorption coefficient. Similar expressions can be found in [106], where it

is implemented for the dynamics of a solar sail. A condensed form, which will be needed

for torque calculations, is given by

FSRP = −P (R)
n∑
k=1

fk (5.67)

where fk represents the force on each face. However, this solar radiation pressure force

model does not take into account self reflection, which would need a more sophisticated

ray-trace algorithm.

5.3.2.6.2 Solar Radiation Pressure Torque Since the force on each face caused

by the sun’s photons has been calculated, the torque on each face can be found. This

is done by using, once again, the general form moments, Moment = vector×Force.

Each face of each body must undergo this definition, which can calculated by

MSRP = −P (R)

3
TB/I

n∑
k=1

pk×fk (5.68)
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where n is the number of faces, TB/I is inertial to body frame transformation matrix,

and pk is the kth face’s center point. The center point is found by

pk =
1

3

3∑
j=1

∆rkj (5.69)

where k represents the kth face, ∆r corresponds to a single body’s triangular face vertex,

and j represents each triangular face vertex index. The center point of each face must

be found for each body and for each face.

5.3.2.7 Solar Tidal Force

The tidal force occurs when there is stretching or elongation parallel to the sun-

to-object vector and contraction or shorten perpendicular to the same vector. This

same phenomenon is the cause for ocean tides, which are brought forth by the moon.

Consequently, this force represents a separation effect in the object. An approximation

for this force found in [107] is given by

FT idal =
2GMmr

||fobj||32
(5.70)

where M is the mass of the sun, m is the mass of the object, and r is the diameter of

the object. It has been noted by [108] that this force, along with tidal torque, is usually

not taken into account when using rigid-body polyhedron approximations. This is due

to non-deforming bodies and shape preservation, which is already assumed in rigid body

dynamics.

5.3.3 Lie Group Variational Integrator (LGVI)

The LGVI is used in [109] due to “desirable properties such as symplecticity, momen-

tum preservation, and good energy stability for exponentially long time periods, while

simultaneously preserving the Euclidean Lie group structure.” This integrator uses a
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discrete formulation of the equations of motion, which are based off the previous step

as well as numerical estimation of the rigid body’s rotational transformation matrix.

Further detail of this integrator can be found in [109] and [110].

5.3.3.1 Equations of Motion

The discrete equations of motion in the inertial frame, found in [109] need predefined

information for initial conditions. These would include

γi0 = mivi0 (5.71)

Πi0 = Jiωi0 (5.72)

Jdi =
1

2
tr [Ji] I3×3−Ji (5.73)

where i represents the body number (A is 1, B is 2,....,n), γ is the linear momentum

vector, v is the object’s inertial velocity vector in m/s, Π is the angular momentum

vector, Ji is the 3×3 inertia matrix (will later be diagonalized), ω is the angular rate in

rad/s, Jd is the nonstandard moment of inertia matrix, tr [Ji] is the trace of the moment

of inertia matrix, and I3×3 is the identity matrix. The equations of motion are then

xik+1
= xik+

h

mi

γik+
h2

2mi

fik (5.74)

γik+1
= γik+

h

2
fik+

h

2
fik+1

(5.75)

hS

(
Πik+

1

2
Mik

)
= FikJdi−JdiF T

ik
(5.76)

Πik+1
= F T

ik
Πik+

h

2
F T
ik

Mik+
h

2
Mik+1

(5.77)
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Rik+1
= RikFik (5.78)

where k is the current step, x is the state, f is the force, h is the time step in seconds, M

is the moment on the body, S() is the skew-symmetric function of a vector, R is the ro-

tational transformation matrix, and F is the time step rotational transformation matrix.

This must be done for each body A and B. At every time step, the partial differentiation

of the potential is completed. Higher orders for the potential approximation will increase

the simulation time due to more nested loops.

5.3.3.2 Determining Time Step Rotational Transformation Matrix

Equation 5.76 is in the form of the Moser–Veselov equation, which can be approx-

imated numerically and was further studied in [111]. The following approach solves

Equation 5.76 numerically due to its Lyapunov-like equation

FJd−JdF T = S(g) (5.79)

In [109] and [110] this form was solved using an exponential map, which could be written

by using Rodrigues’ formula as

F = exp (S(g)) = I3×3+
sin (||f ||2)

||f ||2
S(f)+

1−cos (||f ||2)

||f ||22
S(f)2 (5.80)

Equation 5.80 can be substituted into Equation 5.79, which will then yield

S(g) =
sin (||f ||2)

||f ||2
S(Jf)+

1−cos (||f ||2)

||f ||22
S(f×Jf) (5.81)

This expression can then be written in its equivalent vector form

G(f) =
sin (||f ||2)

||f ||2
Jf+

1−cos (||f ||2)

||f ||22
f×Jf (5.82)
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which then leads to the equation for applying Newton’s method. The expression, which

is solved iteratively, is

fi+1 = fi+∇G(fi)
−1(g−G(fi)) (5.83)

By doing so, Equation 5.83 is iterated until ||fi−fi+1||2 < ε, where ε is a user defined

tolerance and ∇G(f) is given as

∇G(f) =
||f ||2cos(||f ||2)−sin(||f ||2)

||f ||32
J(f ·fT )+

sin(||f ||2)

||f ||2
J

+
||f ||2sin(||f ||2)−2(1−cos(||f ||2))

||f ||42

[
(f×Jf)·fT

]
+

1−cos(||f ||2)

||f ||22
[−S(Jf)+S(f)J ]

(5.84)

A starting value for f0 is given in [110], which states that f0 = J−1g or f0 can be taken

from the previous solution. Since the formulation for the F2BP is established, further

polyhedron properties must be investigated.

5.3.4 Polyhedron Properties

When a polyhedron shape model is created, it may be done by a variety of ways.

The methods for determining a polyhedron’s mass, center of mass, and inertia matrix

described herein are for triangular faced objects. Constant density of each face’s tetrahe-

dron is not required. It has been shown in [112], [113], and [114] that the aforementioned

characteristics of a polyhedron may be determined.

FORTRAN code for calculating polyhedron properties can be found in Figures 5.13.

This code follows what is formulated in [114]. These steps will not be discussed here.

However, further details are in [114]. When using this algorithm, it should be noted

that the vertexes for each face must be numbered in a counterclockwise fashion, and the

shape must be complex. An alteration has been done so that even complex shapes may

be considered as well as pockets of varying density.
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Once this is completed for each shape, each body must be shifted by the center of

mass location. This insures that the center of mass of the object is at the origin of

the coordinate system. After the shift, the inertia matrix should be recalculated. The

objects must then be rotated to their Eigen axis, which requires a diagonalization of the

inertia matrices.

The diagonalization of an n×n matrix, A, requires the solution to

D = V TAV

where the columns of V hold the Eigen vectors. This expression can be solved by applying

the Jacobi transformation [115], which also presents code for finding the matrix V . Here,

the Eigen vectors correlate to the Jacobi rotations. Matrix V is needed to rotate the

polyhedron face vertexes so each object is aligned along the Eigen axis, which requires

V T to be matrix multiplied with each polyhedron vertex. Recall, that this must be done

independently for each body.

5.3.5 Application to Didymos Binary System

The Didymos system consists of two bodies, which consists of a smaller body (Didy-

moon) orbiting the primary body (Didymain). A radar shape model has been generated

for Didymain, but not for Didymoon. However, there has been a shape generated for use,

which takes the shape of an ellipsoidal tear shape. Simulation results herein are compared

with work that is being conducted at JPL. Figure 5.14 shows an in-orbit representation

of the Didymos binary system.



www.manaraa.com

122

Figure 5.13: Polyhedron property FORTRAN Code. Determines mass, Center of Mass,
and inertia matrix.
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Figure 5.14: Didymos system polyhedron shapes and orbit representation.



www.manaraa.com

124

Table 5.4: These are the initial conditions given to the Didymos system, Didymain and Didymoon (radar and other shape
models).
Note, initial orientation and position manipulation may be needed. This may include re-centering of COM, orienting object
along Eigen axis, and Eigen vector direction

asteroid/

Initial Didymain Didymoon

Conditions (Didymos A) (Didymos B)

Mass (kg) 5.2294178707036255e11 4.8429638900565388e9

Volume (m3) 2.4854815800173700e8 2.3018044912530910e6

Max

Radius (m) 427.5185397834427 111.74808546621394

Orientation

−0.357348082502793 −0.931551345940299 0.0671895662167409

−0.875890552421066 0.359230579402273 0.322132163873506

−0.324219197628853 0.05626260480216 −0.944307381730006

 −0.357348082502793 −0.931551345940299 0.0671895662167409

−0.875890552421066 0.359230579402273 0.322132163873506

−0.324219197628853 0.05626260480216 −0.944307381730006


Inert.Matrix

(kgm2)
≈

 3.1348425e16 0.368129 −0.419496

0.368129 3.19202483e16 7.70503e−2

−0.419496 7.70503e−2 3.27904162e16

 ≈

1.122145998e13 −8.517247e−5 −3.1769855e−4

−8.517247e−5 1.4074548e13 5.15333e−20

−3.1769855e−4 5.15333e−20 1.585313898e13


COM (m)

[
1.35893e−15 −1.99843e−14 −3.06958e−14

] [
5.63076e−15 3.28742e−15 3.23684e−15

]
X Pos (m) 3.86925948652413 −417.801477866771

Y Pos (m) 9.48388418758507 −1024.06696766927

Z Pos (m) 3.51054970647249 −379.068103495574

X Vel (m/s) 1.47687694130238e−3 −0.159472728787646

Y Vel (m/s) −5.69522401145143e−4 6.1496857914388e−02

Z Vel (m/s) −8.91984580904076e−05 9.63162272869109e−03

Body Z axis

spin rate (rad/s) 7.72269580528e−4 1.488075e−4
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5.3.5.1 Simulation, Results and Comparison

The results presented use a 40 second time step for a 96 hour duration simulated

in FORTRAN. Initial conditions for both objects can be found in Table 5.4. Using

these conditions in the table, after the 96 hours of simulation time (not actual run

time) resulted in a Didymoon max position component difference of approximately

−5.71 centimeters and a Didymain max position component difference of−0.529 millimeters.

These values were calculated by subtracting the values given by a source at the Jet

Propulsion Laboratory (JPL) from the FORTRAN computed simulation values. JPL

values are indicated by “Fahnestock,” whom of which conducted the analysis. Plots of

the radial-transverse-normal (RTN) frame position differences can be found in Figures

5.15 and 5.16.

RTN velocity differences follow a similar trend to the position differences. However,

instead of the transverse component seeming to diverge with a linear-like bias, it is

the radial component that has this trend. Figures 5.17 and 5.18 show the linear-like

trend for Didymain and Didymoon. These plots verify the reasoning of the transverse

differences in positions. Since the objects simulated in the FORTRAN code move out

radial faster, positive slope, than the JPL code, they must “slowdown” in the transverse

direction, hence the negative position difference slope. This is seen in both Didymain

and Didymoon. Furthermore, this is due to a transverse difference in the initial forces.

These force differences can be seen in Figure 5.19. Further research must be done to

determine the cause of the difference.

Similarly, differences for the separation distance between body bodies were calculated.

The statistics for the separation distance difference are as follows: average difference

is ≈ 0.3277 mm and 8.92 mm (1 sigma), root mean square is ≈ 8.298 mm, and the

minimum and maximum difference values are ≈ -20.05 mm and 19.21 mm. An overlay

of the separation distances with that of JPL’s values can be seen in Figure 5.20. As it

can be noticed, the amplitude of the cyclic plot does not match nor does the mean value.
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Figure 5.15: RTN frame position difference for Didymain.

Figure 5.16: RTN frame position difference for Didymoon.
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Figure 5.17: RTN frame velocity difference for Didymain.

Figure 5.18: RTN frame velocity difference for Didymoon.
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Figure 5.19: RTN frame force differences for Didymain.

Figure 5.20: Didymoon and Didymain separation distance compared with JPL.
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Figure 5.21: Didymoon and Didymain separation distance compared with JPL magnified
on the last 20 hours.

Figure 5.22: Didymoon angular momentum compared with JPL.
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Figure 5.23: Didymoon angular momentum compared with JPL magnified on the last 3
hours.

This indicates a potential bias of the sinusoid. Further confirmation is seen by viewing

the peaks and troughs. The peaks of the FORTRAN separation distance, in some cases,

are slightly larger than the JPL values. Each trough, however, is noticeably larger than

JPL’s value. Yet both simulations show that the separation magnitude is bounded. A

magnified plot can be seen in Figure 5.21.

To confirm simulation results and conservation of properties, object angular momen-

tum was investigated. For convenience, only the angular momentum for Didymain is

plotted. Similar trends are observed in Didymoon. The angular momentum of Didy-

main is displayed in Figure 5.22. Again, the peaks and troughs do not overlay well

with JPL’s implementation, much like what was seen for the separation distance. How-

ever, the angular momentum is bounded and conserved for at least the 96 hour time

frame presented. A magnified plot of the last 3 hours is shown in Figure 5.23. Another

area for checking conservative properties was to evaluate the accrued summation of the

Frobenius norm associated with the identity matrix subtracted by the rotational trans-



www.manaraa.com

131

formation matrix, F , matrix multiply with its transpose, I3×3−FF T . This should, if

it is fully conserved, be zero. Over the time period of 96 hours, the accrued summed

Frobenius norm associated I3×3−FF T was on the order of 10−14.

5.3.6 Future Work

As was discussed in this chapter, the force components differences are not zero for

each of the RTN axis. This must be further explored to find the reasoning for the

transverse force bias, which may due to not including external forces such as the solar

radiation pressure force as well as solar tidal forces. Another desired lane to investigate is

to incorporate “pockets” of varying density. A way to remedy this situation is to include

a density difference from the rest of the body. If the density is less than the current

density for the simplex, the local density, density for the “pocket,” will be negative.

This subtracts out or adds the difference in the density, hence changing the pocket mass.

There is no need for any difference within the current formulation, except ρa and ρb will

be defined as a full vector and not constant as was done for the simulations. By doing so,

the density must also be changed to a per simplex bases in the “Polyhedron Properties”

subroutine.

5.3.7 Conclusion

All steps needed to formulate the Full-2-Body Problem using polyhedron models

have been presented as well as the incorporation of non-convex shapes. Along with these

steps, incorporation of the equations of motion, two other external forces and torques,

and polyhedron properties have been demonstrated. Simulations using initial conditions

given by the JPL have been ran and have shown that results from the FORTRAN code

agree with small deviations, which correlate to a maximum position component difference

of −5.71 centimeters for Didymoon and −0.529 millimeters for Didymain. The position

difference in the transverse direction shows a linear trend, which might not hold for
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longer durations of simulation time. However, the summed Frobenius norm associated

with I3×3−FF T evaluated to a small value, on the order of 10−14, which would indicate

that the rotational properties accrued small errors.
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